Cargando…

The effect of global signal regression on DCM estimates of noise and effective connectivity from resting state fMRI

The influence of global BOLD fluctuations on resting state functional connectivity in fMRI data remains a topic of debate, with little consensus. In this study, we assessed the effects of global signal regression (GSR) on effective connectivity within and between resting state networks (RSNs) - as e...

Descripción completa

Detalles Bibliográficos
Autores principales: Almgren, Hannes, Van de Steen, Frederik, Razi, Adeel, Friston, Karl, Marinazzo, Daniele
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Academic Press 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7014820/
https://www.ncbi.nlm.nih.gov/pubmed/31816423
http://dx.doi.org/10.1016/j.neuroimage.2019.116435
_version_ 1783496711687110656
author Almgren, Hannes
Van de Steen, Frederik
Razi, Adeel
Friston, Karl
Marinazzo, Daniele
author_facet Almgren, Hannes
Van de Steen, Frederik
Razi, Adeel
Friston, Karl
Marinazzo, Daniele
author_sort Almgren, Hannes
collection PubMed
description The influence of global BOLD fluctuations on resting state functional connectivity in fMRI data remains a topic of debate, with little consensus. In this study, we assessed the effects of global signal regression (GSR) on effective connectivity within and between resting state networks (RSNs) - as estimated with dynamic causal modelling (DCM) for resting state fMRI (rsfMRI). DCM incorporates a forward (generative) model that quantifies the contribution of different types of noise (including global measurement noise), effective connectivity, and (neuro)vascular processes to functional connectivity measurements. DCM analyses were applied to two different designs; namely, longitudinal and cross-sectional designs. In the modelling of longitudinal designs, we considered four extensive longitudinal resting state fMRI datasets with a total number of 20 subjects. In the analysis of cross-sectional designs, we used rsfMRI data from 361 subjects from the Human Connectome Project. We hypothesized that (1) GSR would have no discernible impact on effective connectivity estimated with DCM, and (2) GSR would be reflected in the parameters representing global measurement noise. Additionally, we performed comparative analyses of information gain with and without GSR. Our results showed negligible to small effects of GSR on effective connectivity within small (separately estimated) RSNs. However, although the effect sizes were small, there was substantial to conclusive evidence for an effect of GSR on connectivity parameters. For between-network connectivity, we found two important effects: the effect of GSR on between-network effective connectivity (averaged over all connections) was negligible to small, while the effect of GSR on individual connections was non-negligible. In the cross-sectional (but not in the longitudinal) data, some connections showed substantial to conclusive evidence for an effect of GSR. Contrary to our expectations, we found either no effect (in the longitudinal designs) or a non-specific (cross-sectional design) effect of GSR on parameters characterising (global) measurement noise. Data without GSR were found to be more informative than data with GSR; however, in small resting state networks the precision of posterior estimates was greater after GSR. In conclusion, GSR is a minor concern in DCM studies; however, quantitative interpretation of between-network connections (as opposed to average between-network connectivity) and noise parameters should be treated with some caution. The Kullback-Leibler divergence of the posterior from the prior (i.e., information gain) - together with the precision of posterior estimates - might offer a useful measure to assess the appropriateness of GSR in resting state fMRI.
format Online
Article
Text
id pubmed-7014820
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Academic Press
record_format MEDLINE/PubMed
spelling pubmed-70148202020-03-01 The effect of global signal regression on DCM estimates of noise and effective connectivity from resting state fMRI Almgren, Hannes Van de Steen, Frederik Razi, Adeel Friston, Karl Marinazzo, Daniele Neuroimage Article The influence of global BOLD fluctuations on resting state functional connectivity in fMRI data remains a topic of debate, with little consensus. In this study, we assessed the effects of global signal regression (GSR) on effective connectivity within and between resting state networks (RSNs) - as estimated with dynamic causal modelling (DCM) for resting state fMRI (rsfMRI). DCM incorporates a forward (generative) model that quantifies the contribution of different types of noise (including global measurement noise), effective connectivity, and (neuro)vascular processes to functional connectivity measurements. DCM analyses were applied to two different designs; namely, longitudinal and cross-sectional designs. In the modelling of longitudinal designs, we considered four extensive longitudinal resting state fMRI datasets with a total number of 20 subjects. In the analysis of cross-sectional designs, we used rsfMRI data from 361 subjects from the Human Connectome Project. We hypothesized that (1) GSR would have no discernible impact on effective connectivity estimated with DCM, and (2) GSR would be reflected in the parameters representing global measurement noise. Additionally, we performed comparative analyses of information gain with and without GSR. Our results showed negligible to small effects of GSR on effective connectivity within small (separately estimated) RSNs. However, although the effect sizes were small, there was substantial to conclusive evidence for an effect of GSR on connectivity parameters. For between-network connectivity, we found two important effects: the effect of GSR on between-network effective connectivity (averaged over all connections) was negligible to small, while the effect of GSR on individual connections was non-negligible. In the cross-sectional (but not in the longitudinal) data, some connections showed substantial to conclusive evidence for an effect of GSR. Contrary to our expectations, we found either no effect (in the longitudinal designs) or a non-specific (cross-sectional design) effect of GSR on parameters characterising (global) measurement noise. Data without GSR were found to be more informative than data with GSR; however, in small resting state networks the precision of posterior estimates was greater after GSR. In conclusion, GSR is a minor concern in DCM studies; however, quantitative interpretation of between-network connections (as opposed to average between-network connectivity) and noise parameters should be treated with some caution. The Kullback-Leibler divergence of the posterior from the prior (i.e., information gain) - together with the precision of posterior estimates - might offer a useful measure to assess the appropriateness of GSR in resting state fMRI. Academic Press 2020-03 /pmc/articles/PMC7014820/ /pubmed/31816423 http://dx.doi.org/10.1016/j.neuroimage.2019.116435 Text en © 2019 The Authors http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Almgren, Hannes
Van de Steen, Frederik
Razi, Adeel
Friston, Karl
Marinazzo, Daniele
The effect of global signal regression on DCM estimates of noise and effective connectivity from resting state fMRI
title The effect of global signal regression on DCM estimates of noise and effective connectivity from resting state fMRI
title_full The effect of global signal regression on DCM estimates of noise and effective connectivity from resting state fMRI
title_fullStr The effect of global signal regression on DCM estimates of noise and effective connectivity from resting state fMRI
title_full_unstemmed The effect of global signal regression on DCM estimates of noise and effective connectivity from resting state fMRI
title_short The effect of global signal regression on DCM estimates of noise and effective connectivity from resting state fMRI
title_sort effect of global signal regression on dcm estimates of noise and effective connectivity from resting state fmri
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7014820/
https://www.ncbi.nlm.nih.gov/pubmed/31816423
http://dx.doi.org/10.1016/j.neuroimage.2019.116435
work_keys_str_mv AT almgrenhannes theeffectofglobalsignalregressionondcmestimatesofnoiseandeffectiveconnectivityfromrestingstatefmri
AT vandesteenfrederik theeffectofglobalsignalregressionondcmestimatesofnoiseandeffectiveconnectivityfromrestingstatefmri
AT raziadeel theeffectofglobalsignalregressionondcmestimatesofnoiseandeffectiveconnectivityfromrestingstatefmri
AT fristonkarl theeffectofglobalsignalregressionondcmestimatesofnoiseandeffectiveconnectivityfromrestingstatefmri
AT marinazzodaniele theeffectofglobalsignalregressionondcmestimatesofnoiseandeffectiveconnectivityfromrestingstatefmri
AT almgrenhannes effectofglobalsignalregressionondcmestimatesofnoiseandeffectiveconnectivityfromrestingstatefmri
AT vandesteenfrederik effectofglobalsignalregressionondcmestimatesofnoiseandeffectiveconnectivityfromrestingstatefmri
AT raziadeel effectofglobalsignalregressionondcmestimatesofnoiseandeffectiveconnectivityfromrestingstatefmri
AT fristonkarl effectofglobalsignalregressionondcmestimatesofnoiseandeffectiveconnectivityfromrestingstatefmri
AT marinazzodaniele effectofglobalsignalregressionondcmestimatesofnoiseandeffectiveconnectivityfromrestingstatefmri