Cargando…
Brain SegNet: 3D local refinement network for brain lesion segmentation
MR images (MRIs) accurate segmentation of brain lesions is important for improving cancer diagnosis, surgical planning, and prediction of outcome. However, manual and accurate segmentation of brain lesions from 3D MRIs is highly expensive, time-consuming, and prone to user biases. We present an effi...
Autores principales: | Hu, Xiaojun, Luo, Weijian, Hu, Jiliang, Guo, Sheng, Huang, Weilin, Scott, Matthew R., Wiest, Roland, Dahlweid, Michael, Reyes, Mauricio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7014943/ https://www.ncbi.nlm.nih.gov/pubmed/32046685 http://dx.doi.org/10.1186/s12880-020-0409-2 |
Ejemplares similares
-
SM-SegNet: A Lightweight Squeeze M-SegNet for Tissue Segmentation in Brain MRI Scans
por: Yamanakkanavar, Nagaraj, et al.
Publicado: (2022) -
Retinal Vessel Automatic Segmentation Using SegNet
por: Xu, Xiaomei, et al.
Publicado: (2022) -
Retracted: Retinal Vessel Automatic Segmentation Using SegNet
por: Methods in Medicine, Computational and Mathematical
Publicado: (2023) -
Multi-Scale Squeeze U-SegNet with Multi Global Attention for Brain MRI Segmentation
por: Dayananda, Chaitra, et al.
Publicado: (2021) -
Liver Tumor Segmentation in CT Scans Using Modified SegNet
por: Almotairi, Sultan, et al.
Publicado: (2020)