Cargando…

Metrics for graph comparison: A practitioner’s guide

Comparison of graph structure is a ubiquitous task in data analysis and machine learning, with diverse applications in fields such as neuroscience, cyber security, social network analysis, and bioinformatics, among others. Discovery and comparison of structures such as modular communities, rich club...

Descripción completa

Detalles Bibliográficos
Autores principales: Wills, Peter, Meyer, François G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7015405/
https://www.ncbi.nlm.nih.gov/pubmed/32050004
http://dx.doi.org/10.1371/journal.pone.0228728
_version_ 1783496790948970496
author Wills, Peter
Meyer, François G.
author_facet Wills, Peter
Meyer, François G.
author_sort Wills, Peter
collection PubMed
description Comparison of graph structure is a ubiquitous task in data analysis and machine learning, with diverse applications in fields such as neuroscience, cyber security, social network analysis, and bioinformatics, among others. Discovery and comparison of structures such as modular communities, rich clubs, hubs, and trees yield insight into the generative mechanisms and functional properties of the graph. Often, two graphs are compared via a pairwise distance measure, with a small distance indicating structural similarity and vice versa. Common choices include spectral distances and distances based on node affinities. However, there has of yet been no comparative study of the efficacy of these distance measures in discerning between common graph topologies at different structural scales. In this work, we compare commonly used graph metrics and distance measures, and demonstrate their ability to discern between common topological features found in both random graph models and real world networks. We put forward a multi-scale picture of graph structure wherein we study the effect of global and local structures on changes in distance measures. We make recommendations on the applicability of different distance measures to the analysis of empirical graph data based on this multi-scale view. Finally, we introduce the Python library NetComp that implements the graph distances used in this work.
format Online
Article
Text
id pubmed-7015405
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-70154052020-02-26 Metrics for graph comparison: A practitioner’s guide Wills, Peter Meyer, François G. PLoS One Research Article Comparison of graph structure is a ubiquitous task in data analysis and machine learning, with diverse applications in fields such as neuroscience, cyber security, social network analysis, and bioinformatics, among others. Discovery and comparison of structures such as modular communities, rich clubs, hubs, and trees yield insight into the generative mechanisms and functional properties of the graph. Often, two graphs are compared via a pairwise distance measure, with a small distance indicating structural similarity and vice versa. Common choices include spectral distances and distances based on node affinities. However, there has of yet been no comparative study of the efficacy of these distance measures in discerning between common graph topologies at different structural scales. In this work, we compare commonly used graph metrics and distance measures, and demonstrate their ability to discern between common topological features found in both random graph models and real world networks. We put forward a multi-scale picture of graph structure wherein we study the effect of global and local structures on changes in distance measures. We make recommendations on the applicability of different distance measures to the analysis of empirical graph data based on this multi-scale view. Finally, we introduce the Python library NetComp that implements the graph distances used in this work. Public Library of Science 2020-02-12 /pmc/articles/PMC7015405/ /pubmed/32050004 http://dx.doi.org/10.1371/journal.pone.0228728 Text en © 2020 Wills, Meyer http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Wills, Peter
Meyer, François G.
Metrics for graph comparison: A practitioner’s guide
title Metrics for graph comparison: A practitioner’s guide
title_full Metrics for graph comparison: A practitioner’s guide
title_fullStr Metrics for graph comparison: A practitioner’s guide
title_full_unstemmed Metrics for graph comparison: A practitioner’s guide
title_short Metrics for graph comparison: A practitioner’s guide
title_sort metrics for graph comparison: a practitioner’s guide
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7015405/
https://www.ncbi.nlm.nih.gov/pubmed/32050004
http://dx.doi.org/10.1371/journal.pone.0228728
work_keys_str_mv AT willspeter metricsforgraphcomparisonapractitionersguide
AT meyerfrancoisg metricsforgraphcomparisonapractitionersguide