Cargando…
VAMPr: VAriant Mapping and Prediction of antibiotic resistance via explainable features and machine learning
Antimicrobial resistance (AMR) is an increasing threat to public health. Current methods of determining AMR rely on inefficient phenotypic approaches, and there remains incomplete understanding of AMR mechanisms for many pathogen-antimicrobial combinations. Given the rapid, ongoing increase in avail...
Autores principales: | Kim, Jiwoong, Greenberg, David E., Pifer, Reed, Jiang, Shuang, Xiao, Guanghua, Shelburne, Samuel A., Koh, Andrew, Xie, Yang, Zhan, Xiaowei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7015433/ https://www.ncbi.nlm.nih.gov/pubmed/31929521 http://dx.doi.org/10.1371/journal.pcbi.1007511 |
Ejemplares similares
-
1831. Machine Learning Approaches to Predicting Resistance in Pseudomonas aeruginosa
por: Greenberg, David E, et al.
Publicado: (2019) -
FMAP: Functional Mapping and Analysis Pipeline for metagenomics and metatranscriptomics studies
por: Kim, Jiwoong, et al.
Publicado: (2016) -
2682. Prophylaxis-Driven Molecular Epidemiology of Pseudomonas aeruginosa Bloodstream Infections in Adults With Leukemia
por: Endres, Bradley T, et al.
Publicado: (2019) -
MetaPrism: A versatile toolkit for joint taxa/gene analysis of metagenomic sequencing data
por: Kim, Jiwoong, et al.
Publicado: (2021) -
Identification and Whole Genome Sequencing of the First Case of Kosakonia radicincitans Causing a Human Bloodstream Infection
por: Bhatti, Micah D., et al.
Publicado: (2017)