Cargando…

lncRNACNN3-206 activates intestinal epithelial cell apoptosis and invasion by sponging miR-212, an implication for Crohn's disease

BACKGROUND: Statistics indicate that the incidence of Crohn’s disease (CD) is rising in many countries. The poor understanding on the pathological mechanism has limited the development of effective therapy against this disease. Previous studies showed that long noncoding RNAs (lncRNAs) could be invo...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Na, Shi, Rui-Hua
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Baishideng Publishing Group Inc 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7015720/
https://www.ncbi.nlm.nih.gov/pubmed/32089625
http://dx.doi.org/10.3748/wjg.v26.i5.478
Descripción
Sumario:BACKGROUND: Statistics indicate that the incidence of Crohn’s disease (CD) is rising in many countries. The poor understanding on the pathological mechanism has limited the development of effective therapy against this disease. Previous studies showed that long noncoding RNAs (lncRNAs) could be involved in autoimmune diseases including CD, but the detailed molecular mechanisms remain unclear. AIM: To identify the differentially expressed lncRNAs in the intestinal mucosa associated with CD, and to characterize their pathogenic role(s) and related mechanisms. METHODS: The differential expression of lncRNAs was screened by high-throughput RNA sequencing, and the top candidate genes were validated in an expanded cohort by real-time PCR. The regulatory network was predicted by bioinformatic software and competitive endogenous RNA analysis, and was characterized in Caco-2 and HT-29 cell culture using methods of cell transfection, real-time PCR, Western blotting analysis, flow cytometry, and cell migration and invasion assays. Finally, these findings were confirmed in vivo using a CD animal model. RESULTS: The 3' end of lncRNACNN3-206 and the 3’ UTR of Caspase10 contain high-affinity miR212 binding sites. lncRNACNN3-206 expression was found to be significantly increased in intestinal lesions of CD patients. Activation of the lncRNACNN3-206-miR-212-Caspase10 regulatory network led to increased apoptosis, migration and invasion in intestinal epithelial cells. Knockdown of lncRNACNN3-206 expression alleviated intestinal mucosal inflammation and tissue damage in the CD mouse model. CONCLUSION: lncRNACNN3-206 may play a key role in CD pathogenesis. lncRNACNN3-206 could be a therapeutic target for CD treatment.