Cargando…
In-cell NMR as a sensitive tool to monitor physiological condition of Escherichia coli
The in-cell NMR technique offers significant insights into the structure and function of heterologous proteins in the physiological intracellular environment at an atomic resolution. Escherichia coli (E. coli) is one of the most widely used host cells for heterologous protein expression in structura...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7015911/ https://www.ncbi.nlm.nih.gov/pubmed/32051433 http://dx.doi.org/10.1038/s41598-020-59076-2 |
Sumario: | The in-cell NMR technique offers significant insights into the structure and function of heterologous proteins in the physiological intracellular environment at an atomic resolution. Escherichia coli (E. coli) is one of the most widely used host cells for heterologous protein expression in structural biological studies as well as for in-cell NMR studies to investigate fundamental structural characteristics and the physiochemistry of certain proteins and their intermolecular interactions under physiological conditions. However, in many cases, it is not easy to obtain well-resolved in-cell NMR spectra because the detectability and resolution of these spectra are significantly influenced by intracellular factors such as nonspecific intermolecular interactions. In this study, we re-examined the experimental parameters of E. coli in-cell NMR and found that the detectability and resolution of the NMR spectra clearly depended on the growth phase of the host cells. Furthermore, the detectability and resolution of the E. coli in-cell NMR spectra correlated with the soluble fraction amounts of the expressed target protein. These results indicate that the E. coli in-cell NMR spectrum of a target protein is a useful tool for monitoring the intracellular conditions of the host cell and for establishing the appropriate cultivation conditions for protein overexpression. |
---|