Cargando…

Vapor–liquid–solid growth of large-area multilayer hexagonal boron nitride on dielectric substrates

Multilayer hexagonal boron nitride (h-BN) is highly desirable as a dielectric substrate for the fabrication of two-dimensional (2D) electronic and optoelectronic devices. However, the controllable synthesis of multilayer h-BN in large areas is still limited in terms of crystallinity, thickness and s...

Descripción completa

Detalles Bibliográficos
Autores principales: Shi, Zhiyuan, Wang, Xiujun, Li, Qingtian, Yang, Peng, Lu, Guangyuan, Jiang, Ren, Wang, Huishan, Zhang, Chao, Cong, Chunxiao, Liu, Zhi, Wu, Tianru, Wang, Haomin, Yu, Qingkai, Xie, Xiaoming
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7015929/
https://www.ncbi.nlm.nih.gov/pubmed/32051410
http://dx.doi.org/10.1038/s41467-020-14596-3
_version_ 1783496883026526208
author Shi, Zhiyuan
Wang, Xiujun
Li, Qingtian
Yang, Peng
Lu, Guangyuan
Jiang, Ren
Wang, Huishan
Zhang, Chao
Cong, Chunxiao
Liu, Zhi
Wu, Tianru
Wang, Haomin
Yu, Qingkai
Xie, Xiaoming
author_facet Shi, Zhiyuan
Wang, Xiujun
Li, Qingtian
Yang, Peng
Lu, Guangyuan
Jiang, Ren
Wang, Huishan
Zhang, Chao
Cong, Chunxiao
Liu, Zhi
Wu, Tianru
Wang, Haomin
Yu, Qingkai
Xie, Xiaoming
author_sort Shi, Zhiyuan
collection PubMed
description Multilayer hexagonal boron nitride (h-BN) is highly desirable as a dielectric substrate for the fabrication of two-dimensional (2D) electronic and optoelectronic devices. However, the controllable synthesis of multilayer h-BN in large areas is still limited in terms of crystallinity, thickness and stacking order. Here, we report a vapor–liquid–solid growth (VLSG) method to achieve uniform multilayer h-BN by using a molten Fe(82)B(18) alloy and N(2) as reactants. Liquid Fe(82)B(18) not only supplies boron but also continuously dissociates nitrogen atoms from the N(2) vapor to support direct h-BN growth on a sapphire substrate; therefore, the VLSG method delivers high-quality h-BN multilayers with a controllable thickness. Further investigation of the phase evolution of the Fe-B-N system reveals that isothermal segregation dominates the growth of the h-BN. The approach herein demonstrates the feasibility for large-area fabrication of van der Waals 2D materials and heterostructures.
format Online
Article
Text
id pubmed-7015929
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-70159292020-02-20 Vapor–liquid–solid growth of large-area multilayer hexagonal boron nitride on dielectric substrates Shi, Zhiyuan Wang, Xiujun Li, Qingtian Yang, Peng Lu, Guangyuan Jiang, Ren Wang, Huishan Zhang, Chao Cong, Chunxiao Liu, Zhi Wu, Tianru Wang, Haomin Yu, Qingkai Xie, Xiaoming Nat Commun Article Multilayer hexagonal boron nitride (h-BN) is highly desirable as a dielectric substrate for the fabrication of two-dimensional (2D) electronic and optoelectronic devices. However, the controllable synthesis of multilayer h-BN in large areas is still limited in terms of crystallinity, thickness and stacking order. Here, we report a vapor–liquid–solid growth (VLSG) method to achieve uniform multilayer h-BN by using a molten Fe(82)B(18) alloy and N(2) as reactants. Liquid Fe(82)B(18) not only supplies boron but also continuously dissociates nitrogen atoms from the N(2) vapor to support direct h-BN growth on a sapphire substrate; therefore, the VLSG method delivers high-quality h-BN multilayers with a controllable thickness. Further investigation of the phase evolution of the Fe-B-N system reveals that isothermal segregation dominates the growth of the h-BN. The approach herein demonstrates the feasibility for large-area fabrication of van der Waals 2D materials and heterostructures. Nature Publishing Group UK 2020-02-12 /pmc/articles/PMC7015929/ /pubmed/32051410 http://dx.doi.org/10.1038/s41467-020-14596-3 Text en © The Author(s) 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Shi, Zhiyuan
Wang, Xiujun
Li, Qingtian
Yang, Peng
Lu, Guangyuan
Jiang, Ren
Wang, Huishan
Zhang, Chao
Cong, Chunxiao
Liu, Zhi
Wu, Tianru
Wang, Haomin
Yu, Qingkai
Xie, Xiaoming
Vapor–liquid–solid growth of large-area multilayer hexagonal boron nitride on dielectric substrates
title Vapor–liquid–solid growth of large-area multilayer hexagonal boron nitride on dielectric substrates
title_full Vapor–liquid–solid growth of large-area multilayer hexagonal boron nitride on dielectric substrates
title_fullStr Vapor–liquid–solid growth of large-area multilayer hexagonal boron nitride on dielectric substrates
title_full_unstemmed Vapor–liquid–solid growth of large-area multilayer hexagonal boron nitride on dielectric substrates
title_short Vapor–liquid–solid growth of large-area multilayer hexagonal boron nitride on dielectric substrates
title_sort vapor–liquid–solid growth of large-area multilayer hexagonal boron nitride on dielectric substrates
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7015929/
https://www.ncbi.nlm.nih.gov/pubmed/32051410
http://dx.doi.org/10.1038/s41467-020-14596-3
work_keys_str_mv AT shizhiyuan vaporliquidsolidgrowthoflargeareamultilayerhexagonalboronnitrideondielectricsubstrates
AT wangxiujun vaporliquidsolidgrowthoflargeareamultilayerhexagonalboronnitrideondielectricsubstrates
AT liqingtian vaporliquidsolidgrowthoflargeareamultilayerhexagonalboronnitrideondielectricsubstrates
AT yangpeng vaporliquidsolidgrowthoflargeareamultilayerhexagonalboronnitrideondielectricsubstrates
AT luguangyuan vaporliquidsolidgrowthoflargeareamultilayerhexagonalboronnitrideondielectricsubstrates
AT jiangren vaporliquidsolidgrowthoflargeareamultilayerhexagonalboronnitrideondielectricsubstrates
AT wanghuishan vaporliquidsolidgrowthoflargeareamultilayerhexagonalboronnitrideondielectricsubstrates
AT zhangchao vaporliquidsolidgrowthoflargeareamultilayerhexagonalboronnitrideondielectricsubstrates
AT congchunxiao vaporliquidsolidgrowthoflargeareamultilayerhexagonalboronnitrideondielectricsubstrates
AT liuzhi vaporliquidsolidgrowthoflargeareamultilayerhexagonalboronnitrideondielectricsubstrates
AT wutianru vaporliquidsolidgrowthoflargeareamultilayerhexagonalboronnitrideondielectricsubstrates
AT wanghaomin vaporliquidsolidgrowthoflargeareamultilayerhexagonalboronnitrideondielectricsubstrates
AT yuqingkai vaporliquidsolidgrowthoflargeareamultilayerhexagonalboronnitrideondielectricsubstrates
AT xiexiaoming vaporliquidsolidgrowthoflargeareamultilayerhexagonalboronnitrideondielectricsubstrates