Cargando…
Vapor–liquid–solid growth of large-area multilayer hexagonal boron nitride on dielectric substrates
Multilayer hexagonal boron nitride (h-BN) is highly desirable as a dielectric substrate for the fabrication of two-dimensional (2D) electronic and optoelectronic devices. However, the controllable synthesis of multilayer h-BN in large areas is still limited in terms of crystallinity, thickness and s...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7015929/ https://www.ncbi.nlm.nih.gov/pubmed/32051410 http://dx.doi.org/10.1038/s41467-020-14596-3 |
_version_ | 1783496883026526208 |
---|---|
author | Shi, Zhiyuan Wang, Xiujun Li, Qingtian Yang, Peng Lu, Guangyuan Jiang, Ren Wang, Huishan Zhang, Chao Cong, Chunxiao Liu, Zhi Wu, Tianru Wang, Haomin Yu, Qingkai Xie, Xiaoming |
author_facet | Shi, Zhiyuan Wang, Xiujun Li, Qingtian Yang, Peng Lu, Guangyuan Jiang, Ren Wang, Huishan Zhang, Chao Cong, Chunxiao Liu, Zhi Wu, Tianru Wang, Haomin Yu, Qingkai Xie, Xiaoming |
author_sort | Shi, Zhiyuan |
collection | PubMed |
description | Multilayer hexagonal boron nitride (h-BN) is highly desirable as a dielectric substrate for the fabrication of two-dimensional (2D) electronic and optoelectronic devices. However, the controllable synthesis of multilayer h-BN in large areas is still limited in terms of crystallinity, thickness and stacking order. Here, we report a vapor–liquid–solid growth (VLSG) method to achieve uniform multilayer h-BN by using a molten Fe(82)B(18) alloy and N(2) as reactants. Liquid Fe(82)B(18) not only supplies boron but also continuously dissociates nitrogen atoms from the N(2) vapor to support direct h-BN growth on a sapphire substrate; therefore, the VLSG method delivers high-quality h-BN multilayers with a controllable thickness. Further investigation of the phase evolution of the Fe-B-N system reveals that isothermal segregation dominates the growth of the h-BN. The approach herein demonstrates the feasibility for large-area fabrication of van der Waals 2D materials and heterostructures. |
format | Online Article Text |
id | pubmed-7015929 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-70159292020-02-20 Vapor–liquid–solid growth of large-area multilayer hexagonal boron nitride on dielectric substrates Shi, Zhiyuan Wang, Xiujun Li, Qingtian Yang, Peng Lu, Guangyuan Jiang, Ren Wang, Huishan Zhang, Chao Cong, Chunxiao Liu, Zhi Wu, Tianru Wang, Haomin Yu, Qingkai Xie, Xiaoming Nat Commun Article Multilayer hexagonal boron nitride (h-BN) is highly desirable as a dielectric substrate for the fabrication of two-dimensional (2D) electronic and optoelectronic devices. However, the controllable synthesis of multilayer h-BN in large areas is still limited in terms of crystallinity, thickness and stacking order. Here, we report a vapor–liquid–solid growth (VLSG) method to achieve uniform multilayer h-BN by using a molten Fe(82)B(18) alloy and N(2) as reactants. Liquid Fe(82)B(18) not only supplies boron but also continuously dissociates nitrogen atoms from the N(2) vapor to support direct h-BN growth on a sapphire substrate; therefore, the VLSG method delivers high-quality h-BN multilayers with a controllable thickness. Further investigation of the phase evolution of the Fe-B-N system reveals that isothermal segregation dominates the growth of the h-BN. The approach herein demonstrates the feasibility for large-area fabrication of van der Waals 2D materials and heterostructures. Nature Publishing Group UK 2020-02-12 /pmc/articles/PMC7015929/ /pubmed/32051410 http://dx.doi.org/10.1038/s41467-020-14596-3 Text en © The Author(s) 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Shi, Zhiyuan Wang, Xiujun Li, Qingtian Yang, Peng Lu, Guangyuan Jiang, Ren Wang, Huishan Zhang, Chao Cong, Chunxiao Liu, Zhi Wu, Tianru Wang, Haomin Yu, Qingkai Xie, Xiaoming Vapor–liquid–solid growth of large-area multilayer hexagonal boron nitride on dielectric substrates |
title | Vapor–liquid–solid growth of large-area multilayer hexagonal boron nitride on dielectric substrates |
title_full | Vapor–liquid–solid growth of large-area multilayer hexagonal boron nitride on dielectric substrates |
title_fullStr | Vapor–liquid–solid growth of large-area multilayer hexagonal boron nitride on dielectric substrates |
title_full_unstemmed | Vapor–liquid–solid growth of large-area multilayer hexagonal boron nitride on dielectric substrates |
title_short | Vapor–liquid–solid growth of large-area multilayer hexagonal boron nitride on dielectric substrates |
title_sort | vapor–liquid–solid growth of large-area multilayer hexagonal boron nitride on dielectric substrates |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7015929/ https://www.ncbi.nlm.nih.gov/pubmed/32051410 http://dx.doi.org/10.1038/s41467-020-14596-3 |
work_keys_str_mv | AT shizhiyuan vaporliquidsolidgrowthoflargeareamultilayerhexagonalboronnitrideondielectricsubstrates AT wangxiujun vaporliquidsolidgrowthoflargeareamultilayerhexagonalboronnitrideondielectricsubstrates AT liqingtian vaporliquidsolidgrowthoflargeareamultilayerhexagonalboronnitrideondielectricsubstrates AT yangpeng vaporliquidsolidgrowthoflargeareamultilayerhexagonalboronnitrideondielectricsubstrates AT luguangyuan vaporliquidsolidgrowthoflargeareamultilayerhexagonalboronnitrideondielectricsubstrates AT jiangren vaporliquidsolidgrowthoflargeareamultilayerhexagonalboronnitrideondielectricsubstrates AT wanghuishan vaporliquidsolidgrowthoflargeareamultilayerhexagonalboronnitrideondielectricsubstrates AT zhangchao vaporliquidsolidgrowthoflargeareamultilayerhexagonalboronnitrideondielectricsubstrates AT congchunxiao vaporliquidsolidgrowthoflargeareamultilayerhexagonalboronnitrideondielectricsubstrates AT liuzhi vaporliquidsolidgrowthoflargeareamultilayerhexagonalboronnitrideondielectricsubstrates AT wutianru vaporliquidsolidgrowthoflargeareamultilayerhexagonalboronnitrideondielectricsubstrates AT wanghaomin vaporliquidsolidgrowthoflargeareamultilayerhexagonalboronnitrideondielectricsubstrates AT yuqingkai vaporliquidsolidgrowthoflargeareamultilayerhexagonalboronnitrideondielectricsubstrates AT xiexiaoming vaporliquidsolidgrowthoflargeareamultilayerhexagonalboronnitrideondielectricsubstrates |