Cargando…

DNA methylation landscape of triple-negative ductal carcinoma in situ (DCIS) progressing to the invasive stage in canine breast cancer

Triple-negative breast cancer (TNBC) is a subtype of breast cancer unresponsive to traditional receptor-targeted treatments, leading to a disproportionate number of deaths. Invasive breast cancer is believed to evolve from non-invasive ductal carcinoma in situ (DCIS). Detection of triple-negative DC...

Descripción completa

Detalles Bibliográficos
Autores principales: Beetch, Megan, Harandi-Zadeh, Sadaf, Yang, Tony, Boycott, Cayla, Chen, Yihang, Stefanska, Barbara, Mohammed, Sulma
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7015930/
https://www.ncbi.nlm.nih.gov/pubmed/32051475
http://dx.doi.org/10.1038/s41598-020-59260-4
Descripción
Sumario:Triple-negative breast cancer (TNBC) is a subtype of breast cancer unresponsive to traditional receptor-targeted treatments, leading to a disproportionate number of deaths. Invasive breast cancer is believed to evolve from non-invasive ductal carcinoma in situ (DCIS). Detection of triple-negative DCIS (TN-DCIS) is challenging, therefore strategies to study molecular events governing progression of pre-invasive TN-DCIS to invasive TNBC are needed. Here, we study a canine TN-DCIS progression and investigate the DNA methylation landscape of normal breast tissue, atypical ductal hyperplasia (ADH), DCIS and invasive breast cancer. We report hypo- and hypermethylation of genes within functional categories related to cancer such as transcriptional regulation, apoptosis, signal transduction, and cell migration. DNA methylation changes associated with cancer-related genes become more pronounced at invasive breast cancer stage. Importantly, we identify invasive-only and DCIS-specific DNA methylation alterations that could potentially determine which lesions progress to invasive cancer and which could remain as pre-invasive DCIS. Changes in DNA methylation during TN-DCIS progression in this canine model correspond with gene expression patterns in human breast tissues. This study provides evidence for utilizing methylation status of gene candidates to define late-stage (DCIS and invasive), invasive stage only or DCIS stage only of TN-DCIS progression.