Cargando…

Ultrasound localization microscopy of renal tumor xenografts in chicken embryo is correlated to hypoxia

Ultrasound localization microscopy (ULM) permits the reconstruction of super-resolved microvascular images at clinically relevant penetration depths, which can be potentially leveraged to provide non-invasive quantitative measures of tissue hemodynamics and hypoxic status. We demonstrate that ULM mi...

Descripción completa

Detalles Bibliográficos
Autores principales: Lowerison, Matthew R., Huang, Chengwu, Lucien, Fabrice, Chen, Shigao, Song, Pengfei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7015937/
https://www.ncbi.nlm.nih.gov/pubmed/32051485
http://dx.doi.org/10.1038/s41598-020-59338-z
Descripción
Sumario:Ultrasound localization microscopy (ULM) permits the reconstruction of super-resolved microvascular images at clinically relevant penetration depths, which can be potentially leveraged to provide non-invasive quantitative measures of tissue hemodynamics and hypoxic status. We demonstrate that ULM microbubble data processing methods, applied to images acquired with a Verasonics Vantage 256 system, can provide a non-invasive imaging surrogate biomarker of tissue oxygenation status. This technique was applied to evaluate the microvascular structure, vascular perfusion, and hypoxia of a renal cell carcinoma xenograft model grown in the chorioallantoic membrane of chicken embryos. Histological microvascular density was significantly correlated to ULM measures of intervessel distance (R = −0.92, CI(95) = [−0.99,−0.42], p = 0.01). The Distance Metric, a measure of vascular tortuosity, was found to be significantly correlated to hypoxyprobe quantifications (R = 0.86, CI(95) = [0.17, 0.99], p = 0.03). ULM, by providing non-invasive in vivo microvascular structural information, has the potential to be a crucial clinical imaging modality for the diagnosis and therapy monitoring of solid tumors.