Cargando…
Orthogonal Representations of Object Shape and Category in Deep Convolutional Neural Networks and Human Visual Cortex
Deep Convolutional Neural Networks (CNNs) are gaining traction as the benchmark model of visual object recognition, with performance now surpassing humans. While CNNs can accurately assign one image to potentially thousands of categories, network performance could be the result of layers that are tu...
Autores principales: | Zeman, Astrid A., Ritchie, J. Brendan, Bracci, Stefania, Op de Beeck, Hans |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7016009/ https://www.ncbi.nlm.nih.gov/pubmed/32051467 http://dx.doi.org/10.1038/s41598-020-59175-0 |
Ejemplares similares
-
On the partnership between neural representations of object categories and visual features in the ventral visual pathway
por: Bracci, Stefania, et al.
Publicado: (2017) -
Task Context Overrules Object- and Category-Related Representational Content in the Human Parietal Cortex
por: Bracci, Stefania, et al.
Publicado: (2017) -
The representational hierarchy in human and artificial visual systems in the presence of object-scene regularities
por: Bracci, Stefania, et al.
Publicado: (2023) -
The neural representation of Arabic digits in visual cortex
por: Peters, Lien, et al.
Publicado: (2015) -
Using neural distance to predict reaction time for categorizing the animacy, shape, and abstract properties of objects
por: Ritchie, J. Brendan, et al.
Publicado: (2019)