Cargando…
Identification of patients with and without minimal hepatic encephalopathy based on gray matter volumetry using a support vector machine learning algorithm
Minimal hepatic encephalopathy (MHE) is characterized by diffuse abnormalities in cerebral structure, such as reduced cortical thickness and altered brain parenchymal volume. This study tested the potential of gray matter (GM) volumetry to differentiate between cirrhotic patients with and without MH...
Autores principales: | Chen, Qiu-Feng, Zou, Tian-Xiu, Yang, Zhe-Ting, Chen, Hua-Jun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7016173/ https://www.ncbi.nlm.nih.gov/pubmed/32051514 http://dx.doi.org/10.1038/s41598-020-59433-1 |
Ejemplares similares
-
Altered Topological Properties of Gray Matter Structural Covariance Networks in Minimal Hepatic Encephalopathy
por: Zou, Tian-Xiu, et al.
Publicado: (2018) -
Reduced resting state connectivity and gray matter volume correlate with cognitive impairment in minimal hepatic encephalopathy
por: García-García, Raquel, et al.
Publicado: (2017) -
Anomalous Gray Matter Structural Networks in Patients with Hepatitis B Virus-Related Cirrhosis without Overt Hepatic Encephalopathy
por: Lv, Xiao-Fei, et al.
Publicado: (2015) -
Combining Diffusion Tensor Imaging and Gray Matter Volumetry to Investigate Motor Functioning in Chronic Stroke
por: Yang, Ming, et al.
Publicado: (2015) -
Reduced Cortical Complexity in Cirrhotic Patients with Minimal Hepatic Encephalopathy
por: Chen, Qiu-Feng, et al.
Publicado: (2020)