Cargando…
Deriving disease modules from the compressed transcriptional space embedded in a deep autoencoder
Disease modules in molecular interaction maps have been useful for characterizing diseases. Yet biological networks, that commonly define such modules are incomplete and biased toward some well-studied disease genes. Here we ask whether disease-relevant modules of genes can be discovered without pri...
Autores principales: | Dwivedi, Sanjiv K., Tjärnberg, Andreas, Tegnér, Jesper, Gustafsson, Mika |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7016183/ https://www.ncbi.nlm.nih.gov/pubmed/32051402 http://dx.doi.org/10.1038/s41467-020-14666-6 |
Ejemplares similares
-
NCAE: data-driven representations using a deep network-coherent DNA methylation autoencoder identify robust disease and risk factor signatures
por: Martínez-Enguita, David, et al.
Publicado: (2023) -
Deep neural network prediction of genome-wide transcriptome signatures – beyond the Black-box
por: Magnusson, Rasmus, et al.
Publicado: (2022) -
Auto-Tiler: Variable-Dimension Autoencoder with Tiling for Compressing Intermediate Feature Space of Deep Neural Networks for Internet of Things
por: Park, Jeongsoo, et al.
Publicado: (2021) -
Deep Multivariate Time Series Embedding Clustering via Attentive-Gated Autoencoder
por: Ienco, Dino, et al.
Publicado: (2020) -
Cross-modal semantic autoencoder with embedding consensus
por: Sun, Shengzi, et al.
Publicado: (2021)