Cargando…
Single-trial fMRI activation maps measured during the InterTVA event-related voice localizer. A data set ready for inter-subject pattern analysis
Multivariate pattern analysis (MVPA) of functional neuroimaging data has emerged as a key tool for studying the cognitive architecture of the human brain. At the group level, we have recently demonstrated the advantages of an under-exploited scheme that consists in training a machine learning model...
Autores principales: | Aglieri, Virginia, Cagna, Bastien, Belin, Pascal, Takerkart, Sylvain |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7016221/ https://www.ncbi.nlm.nih.gov/pubmed/32071965 http://dx.doi.org/10.1016/j.dib.2020.105170 |
Ejemplares similares
-
FMRI-based identity classification accuracy in left temporal and frontal regions predicts speaker recognition performance
por: Aglieri, Virginia, et al.
Publicado: (2021) -
Graph-Based Inter-Subject Pattern Analysis of fMRI Data
por: Takerkart, Sylvain, et al.
Publicado: (2014) -
Functional connectivity within the voice perception network and its behavioural relevance
por: Aglieri, Virginia, et al.
Publicado: (2018) -
Visualising inter-subject variability in fMRI using threshold-weighted overlap maps
por: Seghier, Mohamed L., et al.
Publicado: (2016) -
Voice, (inter-)subjectivity, and real time recurrent interaction
por: Cummins, Fred
Publicado: (2014)