Cargando…
Application of an Artificial Intelligence Algorithm to Prognostically Stratify Grade II Gliomas
(1) Background: Recently, it has been shown that the extent of resection (EOR) and molecular classification of low-grade gliomas (LGGs) are endowed with prognostic significance. However, a prognostic stratification of patients able to give specific weight to the single parameters able to predict pro...
Autores principales: | Cesselli, Daniela, Ius, Tamara, Isola, Miriam, Del Ben, Fabio, Da Col, Giacomo, Bulfoni, Michela, Turetta, Matteo, Pegolo, Enrico, Marzinotto, Stefania, Scott, Cathryn Anne, Mariuzzi, Laura, Di Loreto, Carla, Beltrami, Antonio Paolo, Skrap, Miran |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7016715/ https://www.ncbi.nlm.nih.gov/pubmed/31877896 http://dx.doi.org/10.3390/cancers12010050 |
Ejemplares similares
-
Multimodal Assessment Shows a Mostly Preserved Cognitive Status in Incidentally Discovered Low Grade Gliomas: A Single Institution Study
por: Guarracino, Ilaria, et al.
Publicado: (2020) -
Machine learning to improve interpretability of clinical, radiological and panel-based genomic data of glioma grade 4 patients undergoing surgical resection
por: Dal Bo, Michele, et al.
Publicado: (2023) -
Second Surgery in Insular Low-Grade Gliomas
por: Ius, Tamara, et al.
Publicado: (2015) -
Predictors of Postoperative Seizure Outcome in Low Grade Glioma: From Volumetric Analysis to Molecular Stratification
por: Ius, Tamara, et al.
Publicado: (2020) -
Role of Microenvironment in Glioma Invasion: What We Learned from In Vitro Models
por: Manini, Ivana, et al.
Publicado: (2018)