Cargando…
SparkRA: Enabling Big Data Scalability for the GATK RNA-seq Pipeline with Apache Spark
The rapid proliferation of low-cost RNA-seq data has resulted in a growing interest in RNA analysis techniques for various applications, ranging from identifying genotype–phenotype relationships to validating discoveries of other analysis results. However, many practical applications in this field a...
Autores principales: | Al-Ars, Zaid, Wang, Saiyi, Mushtaq, Hamid |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7016739/ https://www.ncbi.nlm.nih.gov/pubmed/31947774 http://dx.doi.org/10.3390/genes11010053 |
Ejemplares similares
-
SparkGA2: Production-quality memory-efficient Apache Spark based genome analysis framework
por: Mushtaq, Hamid, et al.
Publicado: (2019) -
Apache Spark for Scalable Physics Analysis
por: Dimakopoulos, Vasileios
Publicado: (2018) -
Scala and Spark for big data analytics: tame big data with Scala and Apache Spark!
por: Karim, Md Rezaul
Publicado: (2017) -
Optimizing performance of GATK workflows using Apache Arrow In-Memory data framework
por: Ahmad, Tanveer, et al.
Publicado: (2020) -
Apache Spark 2: master complex big data processing, stream analytics, and machine learning with Apache Spark
por: Kienzler, Romeo, et al.
Publicado: (2018)