Cargando…
Local Epigenomic Data are more Informative than Local Genome Sequence Data in Predicting Enhancer-Promoter Interactions Using Neural Networks
Enhancer-promoter interactions (EPIs) are crucial for transcriptional regulation. Mapping such interactions proves useful for understanding disease regulations and discovering risk genes in genome-wide association studies. Some previous studies showed that machine learning methods, as computational...
Autores principales: | Xiao, Mengli, Zhuang, Zhong, Pan, Wei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7016741/ https://www.ncbi.nlm.nih.gov/pubmed/31905774 http://dx.doi.org/10.3390/genes11010041 |
Ejemplares similares
-
Local epigenomic state cannot discriminate interacting and non-interacting enhancer–promoter pairs with high accuracy
por: Xi, Wang, et al.
Publicado: (2018) -
EpiAlignment: alignment with both DNA sequence and epigenomic data
por: Lu, Jia, et al.
Publicado: (2019) -
Promoter-anchored chromatin interactions predicted from genetic analysis of epigenomic data
por: Wu, Yang, et al.
Publicado: (2020) -
Sleep – More Local and Complex than Previously Thought?
por: Genzel, Lisa, et al.
Publicado: (2012) -
Domain-Informed Neural Networks for Interaction Localization Within Astroparticle Experiments
por: Liang, Shixiao, et al.
Publicado: (2022)