Cargando…

Delineating the Molecular Basis of the Calmodulin–bMunc13-2 Interaction by Cross-Linking/Mass Spectrometry—Evidence for a Novel CaM Binding Motif in bMunc13-2

Exploring the interactions between the Ca(2+) binding protein calmodulin (CaM) and its target proteins remains a challenging task. Members of the Munc13 protein family play an essential role in short-term synaptic plasticity, modulated via the interaction with CaM at the presynaptic compartment. In...

Descripción completa

Detalles Bibliográficos
Autores principales: Piotrowski, Christine, Moretti, Rocco, Ihling, Christian H., Haedicke, André, Liepold, Thomas, Lipstein, Noa, Meiler, Jens, Jahn, Olaf, Sinz, Andrea
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7017353/
https://www.ncbi.nlm.nih.gov/pubmed/31936129
http://dx.doi.org/10.3390/cells9010136
Descripción
Sumario:Exploring the interactions between the Ca(2+) binding protein calmodulin (CaM) and its target proteins remains a challenging task. Members of the Munc13 protein family play an essential role in short-term synaptic plasticity, modulated via the interaction with CaM at the presynaptic compartment. In this study, we focus on the bMunc13-2 isoform expressed in the brain, as strong changes in synaptic transmission were observed upon its mutagenesis or deletion. The CaM–bMunc13-2 interaction was previously characterized at the molecular level using short bMunc13-2-derived peptides only, revealing a classical 1–5–10 CaM binding motif. Using larger protein constructs, we have now identified for the first time a novel and unique CaM binding site in bMunc13-2 that contains an N-terminal extension of a classical 1–5–10 CaM binding motif. We characterize this motif using a range of biochemical and biophysical methods and highlight its importance for the CaM–bMunc13-2 interaction.