Cargando…

Accuracy of Broselow tape in estimating the weight of the child for management of pediatric emergencies in Nepalese population

BACKGROUND: Children with emergency conditions require immediate life-saving intervention and resuscitation. Unlike adults, the pediatric emergency drug dose, equipment sizes, and defibrillation energy doses are calculated based on the weight of the individual child. Broselow tape is a color-coded l...

Descripción completa

Detalles Bibliográficos
Autores principales: K.C., Pukar, Jha, Akhilendra, Ghimire, Kamal, Shrestha, Roshana, Shrestha, Anmol Purna
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7017533/
https://www.ncbi.nlm.nih.gov/pubmed/32050890
http://dx.doi.org/10.1186/s12245-020-0269-0
Descripción
Sumario:BACKGROUND: Children with emergency conditions require immediate life-saving intervention and resuscitation. Unlike adults, the pediatric emergency drug dose, equipment sizes, and defibrillation energy doses are calculated based on the weight of the individual child. Broselow tape is a color-coded length-based tape that utilizes height/weight correlations for children. However, in low-income countries like Nepal, due to factors like undernutrition, the Broselow tape may not accurately estimate weight in all ranges of pediatric age group. METHODS: This study was conducted in the Department of Pediatrics of Dhulikhel Hospital, Kathmandu University Teaching Hospital, in children less than 15 years of age. Our study aims to prospectively compare the actual weights of urban and rural Nepalese children with the estimated weights using the Broselow tape (2017 edition) and the updated APLS formula. The errors in the selection of endotracheal tube size and adrenaline dose using the Broselow tape were also explored. RESULTS: This study included 315 children with male to female ratio of 0.63:1. They were divided into 3 groups according to their estimated weight by the Broselow tape into < 10 kg, 10–18, and > 18 kg. There was a total agreement of the estimated color zone according to the Broselow tape with the actual weight in the gray zone (p = 0.01). There was a positive relationship between the actual body weight and the estimated body weight (correlation (r = 0.970, p = 0.01) and accuracy (r(2) = 0.941)). Our analysis showed that the accuracy of estimated weight with the Broselow tape decreases with increasing weight of children. The precision of the tape was relatively high in the lower length zones as compared to the higher length zones. The estimated size of the endotracheal tube (p = 0.01) and adrenaline dose (p = 0.08) by the Broselow tape was in agreement with that estimated using PALS formula in weight group of less than 18 kg, but decreases as the estimated weight increases further. CONCLUSIONS: The accuracy of the Broselow tape in estimating the weight of a child, endotracheal tube size, and dose of adrenaline is higher in weight group of less than 18 kg, and accuracy decreases as the weight of child increases. The Broselow tape should be avoided in children weighing more than 18 kg. Hence, PALS age-based formula for ET tube size estimation and weight-based formula for adrenaline dose calculation are recommended for children weighing more than 18 kg.