Cargando…
A greedy stacking algorithm for model ensembling and domain weighting
OBJECTIVE: Because it is impossible to know which statistical learning algorithm performs best on a prediction task, it is common to use stacking methods to ensemble individual learners into a more powerful single learner. Stacking algorithms are usually based on linear models, which may run into pr...
Autores principales: | Kurz, Christoph F., Maier, Werner, Rink, Christian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7017540/ https://www.ncbi.nlm.nih.gov/pubmed/32051022 http://dx.doi.org/10.1186/s13104-020-4931-7 |
Ejemplares similares
-
Beware greedy algorithms
por: Simmons, Benno I., et al.
Publicado: (2019) -
An R package for ensemble learning stacking
por: Nukui, Taichi, et al.
Publicado: (2023) -
A greedy regression algorithm with coarse weights offers novel advantages
por: Jeffries, Clark D., et al.
Publicado: (2022) -
GGA-MLP: A Greedy Genetic Algorithm to Optimize Weights and Biases in Multilayer Perceptron
por: Bansal, Priti, et al.
Publicado: (2022) -
Ensemble and Greedy Approach for the Reconstruction of Large Gene Co-Expression Networks
por: Gómez-Vela, Francisco, et al.
Publicado: (2019)