Cargando…
Computational study of parameter sensitivity in DevR regulated gene expression
The DevRS two-component system plays a pivotal role in signal transmission and downstream gene regulation in Mycobacterium tuberculosis. Under the hypoxic condition, phosphorylated DevR interacts with multiple binding sites at the promoter region of the target genes. In the present work, we carried...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7018068/ https://www.ncbi.nlm.nih.gov/pubmed/32053690 http://dx.doi.org/10.1371/journal.pone.0228967 |
Sumario: | The DevRS two-component system plays a pivotal role in signal transmission and downstream gene regulation in Mycobacterium tuberculosis. Under the hypoxic condition, phosphorylated DevR interacts with multiple binding sites at the promoter region of the target genes. In the present work, we carried out a detailed computational analysis to figure out the sensitivity of the kinetic parameters. The set of kinetic parameters takes care of the interaction among phosphorylated DevR and the binding sites, transcription and translation processes. We employ the method of stochastic optimization to quantitate the relevant kinetic parameter set necessary for DevR regulated gene expression. Measures of different correlation coefficients provide the relative ordering of kinetic parameters involved in gene regulation. Results obtained from correlation coefficients are further corroborated by sensitivity amplification. |
---|