Cargando…
Modulation of PTEN by hexarelin attenuates coronary artery ligation-induced heart failure in rats
BACKGROUND/AIM: Hexarelin is a synthetic growth hormone-releasing peptide that exerts cardioprotective effects. However, its cardioprotective effect against heart failure (HF) is yet to be explained. This study investigated the therapeutic role of hexarelin and the mechanisms underlying its cardiopr...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Scientific and Technological Research Council of Turkey
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7018219/ https://www.ncbi.nlm.nih.gov/pubmed/31091855 http://dx.doi.org/10.3906/sag-1812-49 |
_version_ | 1783497313549811712 |
---|---|
author | AGBO, Elvis LIU, Donghai LI, Meixiu SAAHENE, Roland-Osei CHEN, Liqiang ZHAO, Junpeng WANG, Yiquan TIAN, Guozhong |
author_facet | AGBO, Elvis LIU, Donghai LI, Meixiu SAAHENE, Roland-Osei CHEN, Liqiang ZHAO, Junpeng WANG, Yiquan TIAN, Guozhong |
author_sort | AGBO, Elvis |
collection | PubMed |
description | BACKGROUND/AIM: Hexarelin is a synthetic growth hormone-releasing peptide that exerts cardioprotective effects. However, its cardioprotective effect against heart failure (HF) is yet to be explained. This study investigated the therapeutic role of hexarelin and the mechanisms underlying its cardioprotective effects against coronary artery ligation (CAL)-induced HF in rats. MATERIALS AND METHODS: Rats with four weeks of permanent CAL, induced myocardial infarction, and HF were randomly separated into four groups: the control group (Ctrl), sham group (Sham), hexarelin treatment group (HF + Hx), and heart failure group (HF). The rats were treated with subcutaneous injection of hexarelin (100 µg/kg) in the treatment group or saline in the other groups twice a day for 30 days. Left ventricular (LV) function, oxidative stress, apoptosis, molecular analyses, and cardiac structural and pathological changes in rats were assessed. RESULTS: The treatment of HF rats with hexarelin significantly induced the upregulation of phosphatase and tensin homologue (PTEN) expression and inhibited the phosphorylation of protein kinase B (Akt) and mammalian target of rapamycin (mTOR) to significantly improve LV function, ameliorate myocardial remodeling, and reduce oxidative stress. CONCLUSION: These findings indicate that hexarelin attenuates CAL-induced HF in rats by ameliorating myocardial remodeling, LV dysfunction, and oxidative stress via the upmodulation of PTEN signaling and downregulation of the Akt/mTOR signaling pathway. |
format | Online Article Text |
id | pubmed-7018219 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | The Scientific and Technological Research Council of Turkey |
record_format | MEDLINE/PubMed |
spelling | pubmed-70182192020-03-23 Modulation of PTEN by hexarelin attenuates coronary artery ligation-induced heart failure in rats AGBO, Elvis LIU, Donghai LI, Meixiu SAAHENE, Roland-Osei CHEN, Liqiang ZHAO, Junpeng WANG, Yiquan TIAN, Guozhong Turk J Med Sci Article BACKGROUND/AIM: Hexarelin is a synthetic growth hormone-releasing peptide that exerts cardioprotective effects. However, its cardioprotective effect against heart failure (HF) is yet to be explained. This study investigated the therapeutic role of hexarelin and the mechanisms underlying its cardioprotective effects against coronary artery ligation (CAL)-induced HF in rats. MATERIALS AND METHODS: Rats with four weeks of permanent CAL, induced myocardial infarction, and HF were randomly separated into four groups: the control group (Ctrl), sham group (Sham), hexarelin treatment group (HF + Hx), and heart failure group (HF). The rats were treated with subcutaneous injection of hexarelin (100 µg/kg) in the treatment group or saline in the other groups twice a day for 30 days. Left ventricular (LV) function, oxidative stress, apoptosis, molecular analyses, and cardiac structural and pathological changes in rats were assessed. RESULTS: The treatment of HF rats with hexarelin significantly induced the upregulation of phosphatase and tensin homologue (PTEN) expression and inhibited the phosphorylation of protein kinase B (Akt) and mammalian target of rapamycin (mTOR) to significantly improve LV function, ameliorate myocardial remodeling, and reduce oxidative stress. CONCLUSION: These findings indicate that hexarelin attenuates CAL-induced HF in rats by ameliorating myocardial remodeling, LV dysfunction, and oxidative stress via the upmodulation of PTEN signaling and downregulation of the Akt/mTOR signaling pathway. The Scientific and Technological Research Council of Turkey 2019-06-18 /pmc/articles/PMC7018219/ /pubmed/31091855 http://dx.doi.org/10.3906/sag-1812-49 Text en Copyright © 2019 The Author(s) This article is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use and redistribution provided that the original author and source are credited. |
spellingShingle | Article AGBO, Elvis LIU, Donghai LI, Meixiu SAAHENE, Roland-Osei CHEN, Liqiang ZHAO, Junpeng WANG, Yiquan TIAN, Guozhong Modulation of PTEN by hexarelin attenuates coronary artery ligation-induced heart failure in rats |
title | Modulation of PTEN by hexarelin attenuates coronary artery ligation-induced heart failure in rats |
title_full | Modulation of PTEN by hexarelin attenuates coronary artery ligation-induced heart failure in rats |
title_fullStr | Modulation of PTEN by hexarelin attenuates coronary artery ligation-induced heart failure in rats |
title_full_unstemmed | Modulation of PTEN by hexarelin attenuates coronary artery ligation-induced heart failure in rats |
title_short | Modulation of PTEN by hexarelin attenuates coronary artery ligation-induced heart failure in rats |
title_sort | modulation of pten by hexarelin attenuates coronary artery ligation-induced heart failure in rats |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7018219/ https://www.ncbi.nlm.nih.gov/pubmed/31091855 http://dx.doi.org/10.3906/sag-1812-49 |
work_keys_str_mv | AT agboelvis modulationofptenbyhexarelinattenuatescoronaryarteryligationinducedheartfailureinrats AT liudonghai modulationofptenbyhexarelinattenuatescoronaryarteryligationinducedheartfailureinrats AT limeixiu modulationofptenbyhexarelinattenuatescoronaryarteryligationinducedheartfailureinrats AT saahenerolandosei modulationofptenbyhexarelinattenuatescoronaryarteryligationinducedheartfailureinrats AT chenliqiang modulationofptenbyhexarelinattenuatescoronaryarteryligationinducedheartfailureinrats AT zhaojunpeng modulationofptenbyhexarelinattenuatescoronaryarteryligationinducedheartfailureinrats AT wangyiquan modulationofptenbyhexarelinattenuatescoronaryarteryligationinducedheartfailureinrats AT tianguozhong modulationofptenbyhexarelinattenuatescoronaryarteryligationinducedheartfailureinrats |