Cargando…
Human Skin, Oral, and Gut Microbiomes Predict Chronological Age
Human gut microbiomes are known to change with age, yet the relative value of human microbiomes across the body as predictors of age, and prediction robustness across populations is unknown. In this study, we tested the ability of the oral, gut, and skin (hand and forehead) microbiomes to predict ag...
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Microbiology
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7018528/ https://www.ncbi.nlm.nih.gov/pubmed/32047061 http://dx.doi.org/10.1128/mSystems.00630-19 |
_version_ | 1783497355816861696 |
---|---|
author | Huang, Shi Haiminen, Niina Carrieri, Anna-Paola Hu, Rebecca Jiang, Lingjing Parida, Laxmi Russell, Baylee Allaband, Celeste Zarrinpar, Amir Vázquez-Baeza, Yoshiki Belda-Ferre, Pedro Zhou, Hongwei Kim, Ho-Cheol Swafford, Austin D. Knight, Rob Xu, Zhenjiang Zech |
author_facet | Huang, Shi Haiminen, Niina Carrieri, Anna-Paola Hu, Rebecca Jiang, Lingjing Parida, Laxmi Russell, Baylee Allaband, Celeste Zarrinpar, Amir Vázquez-Baeza, Yoshiki Belda-Ferre, Pedro Zhou, Hongwei Kim, Ho-Cheol Swafford, Austin D. Knight, Rob Xu, Zhenjiang Zech |
author_sort | Huang, Shi |
collection | PubMed |
description | Human gut microbiomes are known to change with age, yet the relative value of human microbiomes across the body as predictors of age, and prediction robustness across populations is unknown. In this study, we tested the ability of the oral, gut, and skin (hand and forehead) microbiomes to predict age in adults using random forest regression on data combined from multiple publicly available studies, evaluating the models in each cohort individually. Intriguingly, the skin microbiome provides the best prediction of age (mean ± standard deviation, 3.8 ± 0.45 years, versus 4.5 ± 0.14 years for the oral microbiome and 11.5 ± 0.12 years for the gut microbiome). This also agrees with forensic studies showing that the skin microbiome predicts postmortem interval better than microbiomes from other body sites. Age prediction models constructed from the hand microbiome generalized to the forehead and vice versa, across cohorts, and results from the gut microbiome generalized across multiple cohorts (United States, United Kingdom, and China). Interestingly, taxa enriched in young individuals (18 to 30 years) tend to be more abundant and more prevalent than taxa enriched in elderly individuals (>60 yrs), suggesting a model in which physiological aging occurs concomitantly with the loss of key taxa over a lifetime, enabling potential microbiome-targeted therapeutic strategies to prevent aging. IMPORTANCE Considerable evidence suggests that the gut microbiome changes with age or even accelerates aging in adults. Whether the age-related changes in the gut microbiome are more or less prominent than those for other body sites and whether predictions can be made about a person’s age from a microbiome sample remain unknown. We therefore combined several large studies from different countries to determine which body site’s microbiome could most accurately predict age. We found that the skin was the best, on average yielding predictions within 4 years of chronological age. This study sets the stage for future research on the role of the microbiome in accelerating or decelerating the aging process and in the susceptibility for age-related diseases. |
format | Online Article Text |
id | pubmed-7018528 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | American Society for Microbiology |
record_format | MEDLINE/PubMed |
spelling | pubmed-70185282020-02-26 Human Skin, Oral, and Gut Microbiomes Predict Chronological Age Huang, Shi Haiminen, Niina Carrieri, Anna-Paola Hu, Rebecca Jiang, Lingjing Parida, Laxmi Russell, Baylee Allaband, Celeste Zarrinpar, Amir Vázquez-Baeza, Yoshiki Belda-Ferre, Pedro Zhou, Hongwei Kim, Ho-Cheol Swafford, Austin D. Knight, Rob Xu, Zhenjiang Zech mSystems Observation Human gut microbiomes are known to change with age, yet the relative value of human microbiomes across the body as predictors of age, and prediction robustness across populations is unknown. In this study, we tested the ability of the oral, gut, and skin (hand and forehead) microbiomes to predict age in adults using random forest regression on data combined from multiple publicly available studies, evaluating the models in each cohort individually. Intriguingly, the skin microbiome provides the best prediction of age (mean ± standard deviation, 3.8 ± 0.45 years, versus 4.5 ± 0.14 years for the oral microbiome and 11.5 ± 0.12 years for the gut microbiome). This also agrees with forensic studies showing that the skin microbiome predicts postmortem interval better than microbiomes from other body sites. Age prediction models constructed from the hand microbiome generalized to the forehead and vice versa, across cohorts, and results from the gut microbiome generalized across multiple cohorts (United States, United Kingdom, and China). Interestingly, taxa enriched in young individuals (18 to 30 years) tend to be more abundant and more prevalent than taxa enriched in elderly individuals (>60 yrs), suggesting a model in which physiological aging occurs concomitantly with the loss of key taxa over a lifetime, enabling potential microbiome-targeted therapeutic strategies to prevent aging. IMPORTANCE Considerable evidence suggests that the gut microbiome changes with age or even accelerates aging in adults. Whether the age-related changes in the gut microbiome are more or less prominent than those for other body sites and whether predictions can be made about a person’s age from a microbiome sample remain unknown. We therefore combined several large studies from different countries to determine which body site’s microbiome could most accurately predict age. We found that the skin was the best, on average yielding predictions within 4 years of chronological age. This study sets the stage for future research on the role of the microbiome in accelerating or decelerating the aging process and in the susceptibility for age-related diseases. American Society for Microbiology 2020-02-11 /pmc/articles/PMC7018528/ /pubmed/32047061 http://dx.doi.org/10.1128/mSystems.00630-19 Text en Copyright © 2020 Huang et al. https://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Observation Huang, Shi Haiminen, Niina Carrieri, Anna-Paola Hu, Rebecca Jiang, Lingjing Parida, Laxmi Russell, Baylee Allaband, Celeste Zarrinpar, Amir Vázquez-Baeza, Yoshiki Belda-Ferre, Pedro Zhou, Hongwei Kim, Ho-Cheol Swafford, Austin D. Knight, Rob Xu, Zhenjiang Zech Human Skin, Oral, and Gut Microbiomes Predict Chronological Age |
title | Human Skin, Oral, and Gut Microbiomes Predict Chronological Age |
title_full | Human Skin, Oral, and Gut Microbiomes Predict Chronological Age |
title_fullStr | Human Skin, Oral, and Gut Microbiomes Predict Chronological Age |
title_full_unstemmed | Human Skin, Oral, and Gut Microbiomes Predict Chronological Age |
title_short | Human Skin, Oral, and Gut Microbiomes Predict Chronological Age |
title_sort | human skin, oral, and gut microbiomes predict chronological age |
topic | Observation |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7018528/ https://www.ncbi.nlm.nih.gov/pubmed/32047061 http://dx.doi.org/10.1128/mSystems.00630-19 |
work_keys_str_mv | AT huangshi humanskinoralandgutmicrobiomespredictchronologicalage AT haiminenniina humanskinoralandgutmicrobiomespredictchronologicalage AT carrieriannapaola humanskinoralandgutmicrobiomespredictchronologicalage AT hurebecca humanskinoralandgutmicrobiomespredictchronologicalage AT jianglingjing humanskinoralandgutmicrobiomespredictchronologicalage AT paridalaxmi humanskinoralandgutmicrobiomespredictchronologicalage AT russellbaylee humanskinoralandgutmicrobiomespredictchronologicalage AT allabandceleste humanskinoralandgutmicrobiomespredictchronologicalage AT zarrinparamir humanskinoralandgutmicrobiomespredictchronologicalage AT vazquezbaezayoshiki humanskinoralandgutmicrobiomespredictchronologicalage AT beldaferrepedro humanskinoralandgutmicrobiomespredictchronologicalage AT zhouhongwei humanskinoralandgutmicrobiomespredictchronologicalage AT kimhocheol humanskinoralandgutmicrobiomespredictchronologicalage AT swaffordaustind humanskinoralandgutmicrobiomespredictchronologicalage AT knightrob humanskinoralandgutmicrobiomespredictchronologicalage AT xuzhenjiangzech humanskinoralandgutmicrobiomespredictchronologicalage |