Cargando…

GREG—studying transcriptional regulation using integrative graph databases

A gene regulatory process is the result of the concerted action of transcription factors, co-factors, regulatory non-coding RNAs (ncRNAs) and chromatin interactions. Therefore, the combination of protein–DNA, protein–protein, ncRNA–DNA, ncRNA–protein and DNA–DNA data in a single graph database offer...

Descripción completa

Detalles Bibliográficos
Autores principales: Mei, Songqing, Huang, Xiaowei, Xie, Chengshu, Mora, Antonio
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7018612/
https://www.ncbi.nlm.nih.gov/pubmed/32055858
http://dx.doi.org/10.1093/database/baz162
Descripción
Sumario:A gene regulatory process is the result of the concerted action of transcription factors, co-factors, regulatory non-coding RNAs (ncRNAs) and chromatin interactions. Therefore, the combination of protein–DNA, protein–protein, ncRNA–DNA, ncRNA–protein and DNA–DNA data in a single graph database offers new possibilities regarding generation of biological hypotheses. GREG (The Gene Regulation Graph Database) is an integrative database and web resource that allows the user to visualize and explore the network of all above-mentioned interactions for a query transcription factor, long non-coding RNA, genomic range or DNA annotation, as well as extracting node and interaction information, identifying connected nodes and performing advanced graphical queries directly on the regulatory network, in a simple and efficient way. In this article, we introduce GREG together with some application examples (including exploratory research of Nanog’s regulatory landscape and the etiology of chronic obstructive pulmonary disease), which we use as a demonstration of the advantages of using graph databases in biomedical research. Database URL: https://mora-lab.github.io/projects/greg.html, www.moralab.science/GREG/