Cargando…

Structure of an Inner Membrane Protein Required for PhoPQ-Regulated Increases in Outer Membrane Cardiolipin

The Salmonella enterica subsp. enterica serovar Typhimurium PhoPQ two-component system is activated within the intracellular phagosome environment, where it promotes remodeling of the outer membrane and resistance to innate immune antimicrobial peptides. Maintenance of the PhoPQ-regulated outer memb...

Descripción completa

Detalles Bibliográficos
Autores principales: Fan, Junping, Petersen, Erik M., Hinds, Thomas R., Zheng, Ning, Miller, Samuel I.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Microbiology 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7018646/
https://www.ncbi.nlm.nih.gov/pubmed/32047135
http://dx.doi.org/10.1128/mBio.03277-19
Descripción
Sumario:The Salmonella enterica subsp. enterica serovar Typhimurium PhoPQ two-component system is activated within the intracellular phagosome environment, where it promotes remodeling of the outer membrane and resistance to innate immune antimicrobial peptides. Maintenance of the PhoPQ-regulated outer membrane barrier requires PbgA, an inner membrane protein with a transmembrane domain essential for growth, and a periplasmic domain required for PhoPQ-activated increases in outer membrane cardiolipin. Here, we report the crystal structure of cardiolipin-bound PbgA, adopting a novel transmembrane fold that features a cardiolipin binding site in close proximity to a long and deep cleft spanning the lipid bilayer. The end of the cleft extends into the periplasmic domain of the protein, which is structurally coupled to the transmembrane domain via a functionally critical C-terminal helix. In conjunction with a conserved putative catalytic dyad situated at the middle of the cleft, our structural and mutational analyses suggest that PbgA is a multifunction membrane protein that mediates cardiolipin transport, a function essential for growth, and perhaps catalysis of an unknown enzymatic reaction.