Cargando…
Topochemical synthesis of different polymorphs of polymers as a paradigm for tuning properties of polymers
Different packing is a mechanism through which nature can produce materials of different properties from the same basic units. There is great interest in constructing different forms of the same polymer by utilising different packing. Common solution-synthesized polymers are amorphous and their post...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7018732/ https://www.ncbi.nlm.nih.gov/pubmed/32054844 http://dx.doi.org/10.1038/s41467-020-14733-y |
Sumario: | Different packing is a mechanism through which nature can produce materials of different properties from the same basic units. There is great interest in constructing different forms of the same polymer by utilising different packing. Common solution-synthesized polymers are amorphous and their post-synthesis crystallization into different topologies is almost impossible. Here we show solid-state polymerization of different reactive polymorphs of a monomer pre-organized in different topologies. Trimorphs of a dipeptide monomer pack in a head-to-tail fashion, placing the azide and alkyne of adjacent monomers in proximity. On heating, these crystals undergo a topochemical azide-alkyne cycloaddition reaction yielding triazole-linked polymer in three different crystalline states; one with antiparallel arrangement of polymer chains, another with parallelly oriented chains, and a third form containing a 1:1 blend of two different conformers aligned in parallel. This approach of exploiting different polymorphs of a monomer for topochemical polymerization to yield polymorphs of polymers is promising for future research. |
---|