Cargando…
Fully automated plaque characterization in intravascular OCT images using hybrid convolutional and lumen morphology features
For intravascular OCT (IVOCT) images, we developed an automated atherosclerotic plaque characterization method that used a hybrid learning approach, which combined deep-learning convolutional and hand-crafted, lumen morphological features. Processing was done on innate A-line units with labels fibro...
Autores principales: | Lee, Juhwan, Prabhu, David, Kolluru, Chaitanya, Gharaibeh, Yazan, Zimin, Vladislav N., Dallan, Luis A. P., Bezerra, Hiram G., Wilson, David L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7018759/ https://www.ncbi.nlm.nih.gov/pubmed/32054895 http://dx.doi.org/10.1038/s41598-020-59315-6 |
Ejemplares similares
-
Coronary calcification segmentation in intravascular OCT images using deep learning: application to calcification scoring
por: Gharaibeh, Yazan, et al.
Publicado: (2019) -
Segmentation of Coronary Calcified Plaque in Intravascular OCT Images Using a Two-Step Deep Learning Approach
por: LEE, JUHWAN, et al.
Publicado: (2020) -
Learning With Fewer Images via Image Clustering: Application to Intravascular OCT Image Segmentation
por: KOLLURU, CHAITANYA, et al.
Publicado: (2021) -
Deep neural networks for A-line-based plaque classification in coronary intravascular optical coherence tomography images
por: Kolluru, Chaitanya, et al.
Publicado: (2018) -
Automated A-line coronary plaque classification of intravascular optical coherence tomography images using handcrafted features and large datasets
por: Prabhu, David, et al.
Publicado: (2019)