Cargando…
Machine Learning Decision Tree Models for Differentiation of Posterior Fossa Tumors Using Diffusion Histogram Analysis and Structural MRI Findings
We applied machine learning algorithms for differentiation of posterior fossa tumors using apparent diffusion coefficient (ADC) histogram analysis and structural MRI findings. A total of 256 patients with intra-axial posterior fossa tumors were identified, of whom 248 were included in machine learni...
Autores principales: | Payabvash, Seyedmehdi, Aboian, Mariam, Tihan, Tarik, Cha, Soonmee |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7018938/ https://www.ncbi.nlm.nih.gov/pubmed/32117728 http://dx.doi.org/10.3389/fonc.2020.00071 |
Ejemplares similares
-
Machine Learning Tools for Image-Based Glioma Grading and the Quality of Their Reporting: Challenges and Opportunities
por: Merkaj, Sara, et al.
Publicado: (2022) -
Diffusion MRI in Evaluation of Pediatric Posterior Fossa Tumors
por: Phuttharak, Warinthorn, et al.
Publicado: (2021) -
Topographic correlates of driver mutations and endogenous gene expression in pediatric diffuse midline gliomas and hemispheric high-grade gliomas
por: Kazarian, Eve, et al.
Publicado: (2021) -
Author Correction: Topographic correlates of driver mutations and endogenous gene expression in pediatric diffuse midline gliomas and hemispheric high-grade gliomas
por: Kazarian, Eve, et al.
Publicado: (2021) -
Transcondylar fossa approach for the large, high-flow, and diffuse arteriovenous malformation of the posterior fossa
por: Torihashi, Koichi, et al.
Publicado: (2021)