Cargando…
Population network structures, graph theory, algorithms to match subgraphs may lead to better clustering of households and communities in epidemiological studies: a response
Autores principales: | Trickey, A., Sood, A., Midha, V., Thompson, W., Vellozzi, C., Shadaker, S., Surlikar, V., Kanchi, S., Vickerman, P., May, M. T., Averhoff, F. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cambridge University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7019080/ https://www.ncbi.nlm.nih.gov/pubmed/31918778 http://dx.doi.org/10.1017/S0950268819002243 |
Ejemplares similares
-
Clustering of hepatitis C virus antibody positivity within households and communities in Punjab, India
por: Trickey, A., et al.
Publicado: (2019) -
The burden of hepatitis C virus infection in Punjab, India: A population-based serosurvey
por: Sood, Ajit, et al.
Publicado: (2018) -
Population network structures, graph theory, algorithms to match subgraphs may lead to better clustering of households and communities in epidemiological studies
por: Rao, Arni S. R. Srinivasa
Publicado: (2020) -
SING: Subgraph search In Non-homogeneous Graphs
por: Di Natale, Raffaele, et al.
Publicado: (2010) -
Faster algorithms for counting subgraphs in sparse graphs
por: Bressan, Marco
Publicado: (2021)