Cargando…
Normalization Methods on Single-Cell RNA-seq Data: An Empirical Survey
Data normalization is vital to single-cell sequencing, addressing limitations presented by low input material and various forms of bias or noise present in the sequencing process. Several such normalization methods exist, some of which rely on spike-in genes, molecules added in known quantities to s...
Autores principales: | Lytal, Nicholas, Ran, Di, An, Lingling |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7019105/ https://www.ncbi.nlm.nih.gov/pubmed/32117453 http://dx.doi.org/10.3389/fgene.2020.00041 |
Ejemplares similares
-
NISC: Neural Network-Imputation for Single-Cell RNA Sequencing and Cell Type Clustering
por: Zhang, Xiang, et al.
Publicado: (2022) -
Non-linear Normalization for Non-UMI Single Cell RNA-Seq
por: Wu, Zhijin, et al.
Publicado: (2021) -
A Comparison for Dimensionality Reduction Methods of Single-Cell RNA-seq Data
por: Xiang, Ruizhi, et al.
Publicado: (2021) -
Comparison of Normalization Methods for Analysis of TempO-Seq Targeted RNA Sequencing Data
por: Bushel, Pierre R., et al.
Publicado: (2020) -
Erratum: Comparison of Normalization Methods for Analysis of TempO-Seq Targeted RNA Sequencing Data
Publicado: (2020)