Cargando…

Acute cellular and vascular responses to photodynamic therapy using EGFR-targeted nanobody-photosensitizer conjugates studied with intravital optical imaging and magnetic resonance imaging

Targeted photodynamic therapy (PDT) has the potential to selectively damage tumor tissue and to increase tumor vessel permeability. Here we characterize the tissue biodistribution of two EGFR-targeted nanobody-photosensitizer conjugates (NB-PS), the monovalent 7D12-PS and the biparatopic 7D12-9G8-PS...

Descripción completa

Detalles Bibliográficos
Autores principales: de Bruijn, Henriette S., Mashayekhi, Vida, Schreurs, Tom J.L., van Driel, Pieter B.A.A., Strijkers, Gustav J., van Diest, Paul J., Lowik, Clemens W.G.M., Seynhaeve, Ann L.B., ten Hagen, Timo L.M., Prompers, Jeanine J., van Bergen en Henegouwen, Paul M.P., Robinson, Dominic J., Oliveira, Sabrina
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Ivyspring International Publisher 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7019176/
https://www.ncbi.nlm.nih.gov/pubmed/32089747
http://dx.doi.org/10.7150/thno.37949
_version_ 1783497466265468928
author de Bruijn, Henriette S.
Mashayekhi, Vida
Schreurs, Tom J.L.
van Driel, Pieter B.A.A.
Strijkers, Gustav J.
van Diest, Paul J.
Lowik, Clemens W.G.M.
Seynhaeve, Ann L.B.
ten Hagen, Timo L.M.
Prompers, Jeanine J.
van Bergen en Henegouwen, Paul M.P.
Robinson, Dominic J.
Oliveira, Sabrina
author_facet de Bruijn, Henriette S.
Mashayekhi, Vida
Schreurs, Tom J.L.
van Driel, Pieter B.A.A.
Strijkers, Gustav J.
van Diest, Paul J.
Lowik, Clemens W.G.M.
Seynhaeve, Ann L.B.
ten Hagen, Timo L.M.
Prompers, Jeanine J.
van Bergen en Henegouwen, Paul M.P.
Robinson, Dominic J.
Oliveira, Sabrina
author_sort de Bruijn, Henriette S.
collection PubMed
description Targeted photodynamic therapy (PDT) has the potential to selectively damage tumor tissue and to increase tumor vessel permeability. Here we characterize the tissue biodistribution of two EGFR-targeted nanobody-photosensitizer conjugates (NB-PS), the monovalent 7D12-PS and the biparatopic 7D12-9G8-PS. In addition, we report on the local and acute phototoxic effects triggered by illumination of these NB-PS which have previously shown to lead to extensive tumor damage. Methods: Intravital microscopy and the skin-fold chamber model, containing OSC-19-luc2-cGFP tumors, were used to investigate: a) the fluorescence kinetics and distribution, b) the vascular response and c) the induction of necrosis after illumination at 1 or 24 h post administration of 7D12-PS and 7D12-9G8-PS. In addition, dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) of a solid tumor model was used to investigate the microvascular status 2 h after 7D12-PS mediated PDT. Results: Image analysis showed significant tumor colocalization for both NB-PS which was higher for 7D12-9G8-PS. Intravital imaging showed clear tumor cell membrane localization 1 and 2 h after administration of 7D12-9G8-PS, and fluorescence in or close to endothelial cells in normal tissue for both NB-PS. PDT lead to vasoconstriction and leakage of tumor and normal tissue vessels in the skin-fold chamber model. DCE-MRI confirmed the reduction of tumor perfusion after 7D12-PS mediated PDT. PDT induced extensive tumor necrosis and moderate normal tissue damage, which was similar for both NB-PS conjugates. This was significantly reduced when illumination was performed at 24 h compared to 1 h after administration. Discussion: Although differences were observed in distribution of the two NB-PS conjugates, both led to similar necrosis. Clearly, the response to PDT using NB-PS conjugates is the result of a complex mixture of tumor cell responses and vascular effects, which is likely to be necessary for a maximally effective treatment.
format Online
Article
Text
id pubmed-7019176
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Ivyspring International Publisher
record_format MEDLINE/PubMed
spelling pubmed-70191762020-02-23 Acute cellular and vascular responses to photodynamic therapy using EGFR-targeted nanobody-photosensitizer conjugates studied with intravital optical imaging and magnetic resonance imaging de Bruijn, Henriette S. Mashayekhi, Vida Schreurs, Tom J.L. van Driel, Pieter B.A.A. Strijkers, Gustav J. van Diest, Paul J. Lowik, Clemens W.G.M. Seynhaeve, Ann L.B. ten Hagen, Timo L.M. Prompers, Jeanine J. van Bergen en Henegouwen, Paul M.P. Robinson, Dominic J. Oliveira, Sabrina Theranostics Research Paper Targeted photodynamic therapy (PDT) has the potential to selectively damage tumor tissue and to increase tumor vessel permeability. Here we characterize the tissue biodistribution of two EGFR-targeted nanobody-photosensitizer conjugates (NB-PS), the monovalent 7D12-PS and the biparatopic 7D12-9G8-PS. In addition, we report on the local and acute phototoxic effects triggered by illumination of these NB-PS which have previously shown to lead to extensive tumor damage. Methods: Intravital microscopy and the skin-fold chamber model, containing OSC-19-luc2-cGFP tumors, were used to investigate: a) the fluorescence kinetics and distribution, b) the vascular response and c) the induction of necrosis after illumination at 1 or 24 h post administration of 7D12-PS and 7D12-9G8-PS. In addition, dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) of a solid tumor model was used to investigate the microvascular status 2 h after 7D12-PS mediated PDT. Results: Image analysis showed significant tumor colocalization for both NB-PS which was higher for 7D12-9G8-PS. Intravital imaging showed clear tumor cell membrane localization 1 and 2 h after administration of 7D12-9G8-PS, and fluorescence in or close to endothelial cells in normal tissue for both NB-PS. PDT lead to vasoconstriction and leakage of tumor and normal tissue vessels in the skin-fold chamber model. DCE-MRI confirmed the reduction of tumor perfusion after 7D12-PS mediated PDT. PDT induced extensive tumor necrosis and moderate normal tissue damage, which was similar for both NB-PS conjugates. This was significantly reduced when illumination was performed at 24 h compared to 1 h after administration. Discussion: Although differences were observed in distribution of the two NB-PS conjugates, both led to similar necrosis. Clearly, the response to PDT using NB-PS conjugates is the result of a complex mixture of tumor cell responses and vascular effects, which is likely to be necessary for a maximally effective treatment. Ivyspring International Publisher 2020-01-20 /pmc/articles/PMC7019176/ /pubmed/32089747 http://dx.doi.org/10.7150/thno.37949 Text en © The author(s) This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/). See http://ivyspring.com/terms for full terms and conditions.
spellingShingle Research Paper
de Bruijn, Henriette S.
Mashayekhi, Vida
Schreurs, Tom J.L.
van Driel, Pieter B.A.A.
Strijkers, Gustav J.
van Diest, Paul J.
Lowik, Clemens W.G.M.
Seynhaeve, Ann L.B.
ten Hagen, Timo L.M.
Prompers, Jeanine J.
van Bergen en Henegouwen, Paul M.P.
Robinson, Dominic J.
Oliveira, Sabrina
Acute cellular and vascular responses to photodynamic therapy using EGFR-targeted nanobody-photosensitizer conjugates studied with intravital optical imaging and magnetic resonance imaging
title Acute cellular and vascular responses to photodynamic therapy using EGFR-targeted nanobody-photosensitizer conjugates studied with intravital optical imaging and magnetic resonance imaging
title_full Acute cellular and vascular responses to photodynamic therapy using EGFR-targeted nanobody-photosensitizer conjugates studied with intravital optical imaging and magnetic resonance imaging
title_fullStr Acute cellular and vascular responses to photodynamic therapy using EGFR-targeted nanobody-photosensitizer conjugates studied with intravital optical imaging and magnetic resonance imaging
title_full_unstemmed Acute cellular and vascular responses to photodynamic therapy using EGFR-targeted nanobody-photosensitizer conjugates studied with intravital optical imaging and magnetic resonance imaging
title_short Acute cellular and vascular responses to photodynamic therapy using EGFR-targeted nanobody-photosensitizer conjugates studied with intravital optical imaging and magnetic resonance imaging
title_sort acute cellular and vascular responses to photodynamic therapy using egfr-targeted nanobody-photosensitizer conjugates studied with intravital optical imaging and magnetic resonance imaging
topic Research Paper
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7019176/
https://www.ncbi.nlm.nih.gov/pubmed/32089747
http://dx.doi.org/10.7150/thno.37949
work_keys_str_mv AT debruijnhenriettes acutecellularandvascularresponsestophotodynamictherapyusingegfrtargetednanobodyphotosensitizerconjugatesstudiedwithintravitalopticalimagingandmagneticresonanceimaging
AT mashayekhivida acutecellularandvascularresponsestophotodynamictherapyusingegfrtargetednanobodyphotosensitizerconjugatesstudiedwithintravitalopticalimagingandmagneticresonanceimaging
AT schreurstomjl acutecellularandvascularresponsestophotodynamictherapyusingegfrtargetednanobodyphotosensitizerconjugatesstudiedwithintravitalopticalimagingandmagneticresonanceimaging
AT vandrielpieterbaa acutecellularandvascularresponsestophotodynamictherapyusingegfrtargetednanobodyphotosensitizerconjugatesstudiedwithintravitalopticalimagingandmagneticresonanceimaging
AT strijkersgustavj acutecellularandvascularresponsestophotodynamictherapyusingegfrtargetednanobodyphotosensitizerconjugatesstudiedwithintravitalopticalimagingandmagneticresonanceimaging
AT vandiestpaulj acutecellularandvascularresponsestophotodynamictherapyusingegfrtargetednanobodyphotosensitizerconjugatesstudiedwithintravitalopticalimagingandmagneticresonanceimaging
AT lowikclemenswgm acutecellularandvascularresponsestophotodynamictherapyusingegfrtargetednanobodyphotosensitizerconjugatesstudiedwithintravitalopticalimagingandmagneticresonanceimaging
AT seynhaeveannlb acutecellularandvascularresponsestophotodynamictherapyusingegfrtargetednanobodyphotosensitizerconjugatesstudiedwithintravitalopticalimagingandmagneticresonanceimaging
AT tenhagentimolm acutecellularandvascularresponsestophotodynamictherapyusingegfrtargetednanobodyphotosensitizerconjugatesstudiedwithintravitalopticalimagingandmagneticresonanceimaging
AT prompersjeaninej acutecellularandvascularresponsestophotodynamictherapyusingegfrtargetednanobodyphotosensitizerconjugatesstudiedwithintravitalopticalimagingandmagneticresonanceimaging
AT vanbergenenhenegouwenpaulmp acutecellularandvascularresponsestophotodynamictherapyusingegfrtargetednanobodyphotosensitizerconjugatesstudiedwithintravitalopticalimagingandmagneticresonanceimaging
AT robinsondominicj acutecellularandvascularresponsestophotodynamictherapyusingegfrtargetednanobodyphotosensitizerconjugatesstudiedwithintravitalopticalimagingandmagneticresonanceimaging
AT oliveirasabrina acutecellularandvascularresponsestophotodynamictherapyusingegfrtargetednanobodyphotosensitizerconjugatesstudiedwithintravitalopticalimagingandmagneticresonanceimaging