Cargando…
Single-Neuron Adaptive Hysteresis Compensation of Piezoelectric Actuator Based on Hebb Learning Rules
This paper presents an adaptive hysteresis compensation approach for a piezoelectric actuator (PEA) using single-neuron adaptive control. For a given desired trajectory, the control input to the PEA is dynamically adjusted by the error between the actual and desired trajectories using Hebb learning...
Autores principales: | Qin, Yanding, Duan, Heng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7019309/ https://www.ncbi.nlm.nih.gov/pubmed/31940914 http://dx.doi.org/10.3390/mi11010084 |
Ejemplares similares
-
High-Bandwidth Hysteresis Compensation of Piezoelectric Actuators via Multilayer Feedforward Neural Network Based Inverse Hysteresis Modeling
por: Qin, Yanding, et al.
Publicado: (2021) -
Modeling and compensation of hysteresis in piezoelectric actuators
por: Yu, Zhiliang, et al.
Publicado: (2020) -
Compensation of Hysteresis on Piezoelectric Actuators Based on Tripartite PI Model
por: An, Dong, et al.
Publicado: (2018) -
High-Bandwidth Repetitive Trajectory Tracking Control of Piezoelectric Actuators via Phase–Hysteresis Hybrid Compensation and Feedforward–Feedback Combined Control
por: Yuan, Jie, et al.
Publicado: (2023) -
Hysteresis Compensation and Sliding Mode Control with Perturbation Estimation for Piezoelectric Actuators
por: Ding, Bingxiao, et al.
Publicado: (2018)