Cargando…
Identification of a Circulating Amino Acid Signature in Frail Older Persons with Type 2 Diabetes Mellitus: Results from the Metabofrail Study
Diabetes and frailty are highly prevalent conditions that impact the health status of older adults. Perturbations in protein/amino acid metabolism are associated with both functional impairment and type 2 diabetes mellitus (T2DM). In the present study, we compared the concentrations of a panel of ci...
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7019630/ https://www.ncbi.nlm.nih.gov/pubmed/31940925 http://dx.doi.org/10.3390/nu12010199 |
Sumario: | Diabetes and frailty are highly prevalent conditions that impact the health status of older adults. Perturbations in protein/amino acid metabolism are associated with both functional impairment and type 2 diabetes mellitus (T2DM). In the present study, we compared the concentrations of a panel of circulating 37 amino acids and derivatives between frail/pre-frail older adults with T2DM and robust non-diabetic controls. Sixty-six functionally impaired older persons aged 70+ with T2DM and 30 age and sex-matched controls were included in the analysis. We applied a partial least squares-discriminant analysis (PLS-DA)-based analytical strategy to characterize the metabotype of study participants. The optimal complexity of the PLS-DA model was found to be two latent variables. The proportion of correct classification was 94.1 ± 1.9% for frail/pre-frail persons with T2DM and 100% for control participants. Functionally impaired older persons with T2DM showed higher levels of 3-methyl histidine, alanine, arginine, glutamic acid, ethanolamine sarcosine, and tryptophan. Control participants had higher levels of ornithine and taurine. These findings indicate that a specific profile of amino acids and derivatives characterizes pre-frail/frail older persons with T2DM. The dissection of these pathways may provide novel insights into the metabolic perturbations involved in the disabling cascade in older persons with T2DM. |
---|