Cargando…
A 45 nm CMOS Avalanche Photodiode with 8.4-GHz Bandwidth
Photodiode is one of the key components in optoelectronic technology, which is used to convert optical signal into electrical ones in modern communication systems. In this paper, an avalanche photodiode (APD) is designed and fulfilled, which is compatible with Taiwan Semiconductor Manufacturing Comp...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7019848/ https://www.ncbi.nlm.nih.gov/pubmed/31936108 http://dx.doi.org/10.3390/mi11010065 |
Sumario: | Photodiode is one of the key components in optoelectronic technology, which is used to convert optical signal into electrical ones in modern communication systems. In this paper, an avalanche photodiode (APD) is designed and fulfilled, which is compatible with Taiwan Semiconductor Manufacturing Company (TSMC) 45-nm standard complementary metal–oxide–semiconductor (CMOS) technology without any process modification. The APD based on 45 nm process is beneficial to realize a smaller and more complex monolithically integrated optoelectronic chip. The fabricated CMOS APD operates at 850 nm wavelength optical communication. Its bandwidth can be as high as 8.4 GHz with 0.56 A/W responsivity at reverse bias of 20.8 V. Its active area is designed to be 20 × 20 μm(2). The Simulation Program with Integrated Circuit Emphasis (SPICE) model of the APD is also proposed and verified. The key parameters are extracted based on its electrical, optical and frequency responses by parameter fitting. The device has wide potential application for optical communication systems. |
---|