Cargando…

Dynamic Error Correction of Filament Thermocouples with Different Structures of Junction based on Inverse Filtering Method

Since filament thermocouple is limited by its junction structure and dynamic characteristics, the actual heat conduction process cannot be reproduced during the transient thermal shock. In order to solve this problem, we established a thermocouple dynamic calibration system with laser pulse as excit...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhao, Chenyang, Zhang, Zhijie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7019880/
https://www.ncbi.nlm.nih.gov/pubmed/31905872
http://dx.doi.org/10.3390/mi11010044
_version_ 1783497621811232768
author Zhao, Chenyang
Zhang, Zhijie
author_facet Zhao, Chenyang
Zhang, Zhijie
author_sort Zhao, Chenyang
collection PubMed
description Since filament thermocouple is limited by its junction structure and dynamic characteristics, the actual heat conduction process cannot be reproduced during the transient thermal shock. In order to solve this problem, we established a thermocouple dynamic calibration system with laser pulse as excitation source to transform the problem of the restoring excitation source acting on the surface temperature of thermocouple junction into the problem of solving the one-dimensional (1D) inverse heat conduction process, proposed a two-layer domain filtering kernel regularization method for double conductors of thermocouple, analyzed the factors causing unstable two-layer domain solution, and solved the regular solution of two-layer domain by the filtering kernel regularization strategy. By laser narrow pulse calibration experiment, we obtained experimental samples of filament thermocouples with two kinds of junction structures, butt-welded and ball-welded; established error estimation criterion; and obtained the optimal filtering kernel parameters by the proposed regularization strategy, respectively. The regular solutions solved for different thermocouples were very close to the exact solution under the optimal strategy, indicating that the proposed regularization method can effectively approach the actual surface temperature of the thermocouple junction.
format Online
Article
Text
id pubmed-7019880
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-70198802020-03-09 Dynamic Error Correction of Filament Thermocouples with Different Structures of Junction based on Inverse Filtering Method Zhao, Chenyang Zhang, Zhijie Micromachines (Basel) Article Since filament thermocouple is limited by its junction structure and dynamic characteristics, the actual heat conduction process cannot be reproduced during the transient thermal shock. In order to solve this problem, we established a thermocouple dynamic calibration system with laser pulse as excitation source to transform the problem of the restoring excitation source acting on the surface temperature of thermocouple junction into the problem of solving the one-dimensional (1D) inverse heat conduction process, proposed a two-layer domain filtering kernel regularization method for double conductors of thermocouple, analyzed the factors causing unstable two-layer domain solution, and solved the regular solution of two-layer domain by the filtering kernel regularization strategy. By laser narrow pulse calibration experiment, we obtained experimental samples of filament thermocouples with two kinds of junction structures, butt-welded and ball-welded; established error estimation criterion; and obtained the optimal filtering kernel parameters by the proposed regularization strategy, respectively. The regular solutions solved for different thermocouples were very close to the exact solution under the optimal strategy, indicating that the proposed regularization method can effectively approach the actual surface temperature of the thermocouple junction. MDPI 2019-12-30 /pmc/articles/PMC7019880/ /pubmed/31905872 http://dx.doi.org/10.3390/mi11010044 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Zhao, Chenyang
Zhang, Zhijie
Dynamic Error Correction of Filament Thermocouples with Different Structures of Junction based on Inverse Filtering Method
title Dynamic Error Correction of Filament Thermocouples with Different Structures of Junction based on Inverse Filtering Method
title_full Dynamic Error Correction of Filament Thermocouples with Different Structures of Junction based on Inverse Filtering Method
title_fullStr Dynamic Error Correction of Filament Thermocouples with Different Structures of Junction based on Inverse Filtering Method
title_full_unstemmed Dynamic Error Correction of Filament Thermocouples with Different Structures of Junction based on Inverse Filtering Method
title_short Dynamic Error Correction of Filament Thermocouples with Different Structures of Junction based on Inverse Filtering Method
title_sort dynamic error correction of filament thermocouples with different structures of junction based on inverse filtering method
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7019880/
https://www.ncbi.nlm.nih.gov/pubmed/31905872
http://dx.doi.org/10.3390/mi11010044
work_keys_str_mv AT zhaochenyang dynamicerrorcorrectionoffilamentthermocoupleswithdifferentstructuresofjunctionbasedoninversefilteringmethod
AT zhangzhijie dynamicerrorcorrectionoffilamentthermocoupleswithdifferentstructuresofjunctionbasedoninversefilteringmethod