Cargando…
Evaluation of Electrolyte Concentration and Pro-Inflammatory and Oxidative Status in Dogs with Advanced Chronic Kidney Disease under Dietary Treatment
An integrated study on the effect of renal diet on mineral metabolism, fibroblast growth factor 23 (FGF-23), total antioxidant capacity, and inflammatory markers has not been performed previously. In this study, we evaluated the effects of renal diet on mineral metabolism, oxidative stress and infla...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7020431/ https://www.ncbi.nlm.nih.gov/pubmed/31861622 http://dx.doi.org/10.3390/toxins12010003 |
Sumario: | An integrated study on the effect of renal diet on mineral metabolism, fibroblast growth factor 23 (FGF-23), total antioxidant capacity, and inflammatory markers has not been performed previously. In this study, we evaluated the effects of renal diet on mineral metabolism, oxidative stress and inflammation in dogs with stage 3 or 4 of chronic kidney disease (CKD). Body condition score (BCS), muscle condition score (MCS), serum biochemical profile, ionized calcium (i-Ca), total calcium (t-Ca), phosphorus (P), urea, creatinine, parathyroid hormone (PTH), FGF-23, interleukin 6 (IL-6), interleukin 10 (IL-10), tumor necrosis factor alpha (TNF-α) and total antioxidant capacity (TAC) were measured at baseline (T0) and after 6 months of dietary treatment (T6). Serum urea, P, t-Ca, i-Ca, PTH, FGF-23, IL-6, IL-10, TNF-α and TAC measurements did not differ between T0 and T6. Serum creatinine (SCr) was increased at T6 and serum PTH concentrations were positively correlated with serum SCr and urea. i-Ca was negatively correlated with urea and serum phosphorus was positively correlated with FGF-23. Urea and creatinine were positively correlated. The combination of renal diet and support treatment over 6 months in dogs with CKD stage 3 or 4 was effective in controlling uremia, acid–base balance, blood pressure, total antioxidant capacity, and inflammatory cytokine levels and in maintaining BCS and MCS. |
---|