Cargando…

iSeqQC: a tool for expression-based quality control in RNA sequencing

BACKGROUND: Quality Control in any high-throughput sequencing technology is a critical step, which if overlooked can compromise an experiment and the resulting conclusions. A number of methods exist to identify biases during sequencing or alignment, yet not many tools exist to interpret biases due t...

Descripción completa

Detalles Bibliográficos
Autores principales: Kumar, Gaurav, Ertel, Adam, Feldman, George, Kupper, Joan, Fortina, Paolo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7020508/
https://www.ncbi.nlm.nih.gov/pubmed/32054449
http://dx.doi.org/10.1186/s12859-020-3399-8
Descripción
Sumario:BACKGROUND: Quality Control in any high-throughput sequencing technology is a critical step, which if overlooked can compromise an experiment and the resulting conclusions. A number of methods exist to identify biases during sequencing or alignment, yet not many tools exist to interpret biases due to outliers. RESULTS: Hence, we developed iSeqQC, an expression-based QC tool that detects outliers either produced due to variable laboratory conditions or due to dissimilarity within a phenotypic group. iSeqQC implements various statistical approaches including unsupervised clustering, agglomerative hierarchical clustering and correlation coefficients to provide insight into outliers. It can be utilized through command-line (Github: https://github.com/gkumar09/iSeqQC) or web-interface (http://cancerwebpa.jefferson.edu/iSeqQC). A local shiny installation can also be obtained from github (https://github.com/gkumar09/iSeqQC). CONCLUSION: iSeqQC is a fast, light-weight, expression-based QC tool that detects outliers by implementing various statistical approaches.