Cargando…
iSeqQC: a tool for expression-based quality control in RNA sequencing
BACKGROUND: Quality Control in any high-throughput sequencing technology is a critical step, which if overlooked can compromise an experiment and the resulting conclusions. A number of methods exist to identify biases during sequencing or alignment, yet not many tools exist to interpret biases due t...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7020508/ https://www.ncbi.nlm.nih.gov/pubmed/32054449 http://dx.doi.org/10.1186/s12859-020-3399-8 |
Sumario: | BACKGROUND: Quality Control in any high-throughput sequencing technology is a critical step, which if overlooked can compromise an experiment and the resulting conclusions. A number of methods exist to identify biases during sequencing or alignment, yet not many tools exist to interpret biases due to outliers. RESULTS: Hence, we developed iSeqQC, an expression-based QC tool that detects outliers either produced due to variable laboratory conditions or due to dissimilarity within a phenotypic group. iSeqQC implements various statistical approaches including unsupervised clustering, agglomerative hierarchical clustering and correlation coefficients to provide insight into outliers. It can be utilized through command-line (Github: https://github.com/gkumar09/iSeqQC) or web-interface (http://cancerwebpa.jefferson.edu/iSeqQC). A local shiny installation can also be obtained from github (https://github.com/gkumar09/iSeqQC). CONCLUSION: iSeqQC is a fast, light-weight, expression-based QC tool that detects outliers by implementing various statistical approaches. |
---|