Cargando…

Short-term effects of thinning on the development and communities of understory vegetation of Chinese fir plantations in Southeastern China

BACKGROUND: High-density conditions are global issues that threaten the sustainable management of plantations throughout the world. Monocultures and untimely management practices have identically resulted in the simplex of community structures, decreases in biodiversity, and long-term productivity l...

Descripción completa

Detalles Bibliográficos
Autores principales: Xu, Xuelei, Wang, Xinjie, Hu, Yang, Wang, Ping, Saeed, Sajjad, Sun, Yujun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: PeerJ Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7020821/
https://www.ncbi.nlm.nih.gov/pubmed/32095359
http://dx.doi.org/10.7717/peerj.8536
Descripción
Sumario:BACKGROUND: High-density conditions are global issues that threaten the sustainable management of plantations throughout the world. Monocultures and untimely management practices have identically resulted in the simplex of community structures, decreases in biodiversity, and long-term productivity losses in plantations China. The most popular measure which is commonly used to address these issues is thinning, which potentially results in increases in the development of understory plants in plantations. However, there is limited information currently available regarding the community composition of understory vegetation and the associated environmental factors, which has limited the sustainable management of China’s fir plantation ecosystems. METHOD: In the present study, a thinning experiment was implemented which included a control check (CK: no thinning), as well as low intensity thinning (LIT: 20%), moderate intensity thinning (MIT: 33%), and high intensity thinning (HIT: 50%) in Chinese fir plantations located in the Southeastern China. During the investigation process, the understory vegetation examined three years after thinning measures were completed, in order to analyze the impacts of different thinning intensities on the growth and community composition of the understory plants. At the same time, the associated environmental factors in the fir plantations were also investigated. RESULTS: The species richness, total coverage, and biomass of the understory vegetation were observed to be apparently increased with increasing thinning intensity. In addition, it was found that the thinning measures had prominently influenced the soil nutrients. The community compositions of the understory vegetation were significantly different among the four thinning intensity levels, especially between the CK and the HIT. Furthermore, the development of the understory vegetation was found to be significantly correlated with the soil nutrient contents, and the community compositions of the understory vegetation were prominently driven by the tree densities, slope positions, and soil nutrient contents.