Cargando…
Monitoring Depth of Anesthesia Based on Hybrid Features and Recurrent Neural Network
Electroencephalogram (EEG) signals contain valuable information about the different physiological states of the brain, with a variety of linear and nonlinear features that can be used to investigate brain activity. Monitoring the depth of anesthesia (DoA) with EEG is an ongoing challenge in anesthes...
Autores principales: | Li, Ronglin, Wu, Qiang, Liu, Ju, Wu, Qi, Li, Chao, Zhao, Qibin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7020827/ https://www.ncbi.nlm.nih.gov/pubmed/32116494 http://dx.doi.org/10.3389/fnins.2020.00026 |
Ejemplares similares
-
Use of Multiple EEG Features and Artificial Neural Network to Monitor the Depth of Anesthesia
por: Gu, Yue, et al.
Publicado: (2019) -
Propofol Anesthesia Depth Monitoring Based on Self-Attention and Residual Structure Convolutional Neural Network
por: Wang, Yachao, et al.
Publicado: (2022) -
Selection of the Best Electroencephalogram Channel to Predict the Depth of Anesthesia
por: Dubost, Clement, et al.
Publicado: (2019) -
Time-Frequency Analysis of EEG Signals and GLCM Features for Depth of Anesthesia Monitoring
por: Mousavi, Seyed Mortaza, et al.
Publicado: (2021) -
New findings and trends for depth of anesthesia monitoring
por: Jensen, Erik Weber
Publicado: (2018)