Cargando…
Progress and prospects for accelerating materials science with automated and autonomous workflows
Accelerating materials research by integrating automation with artificial intelligence is increasingly recognized as a grand scientific challenge to discover and develop materials for emerging and future technologies. While the solid state materials science community has demonstrated a broad range o...
Autores principales: | Stein, Helge S., Gregoire, John M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Royal Society of Chemistry
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7020936/ https://www.ncbi.nlm.nih.gov/pubmed/32153744 http://dx.doi.org/10.1039/c9sc03766g |
Ejemplares similares
-
Benchmarking the acceleration of materials discovery by sequential learning
por: Rohr, Brian, et al.
Publicado: (2020) -
Autonomous intelligent agents for accelerated materials discovery
por: Montoya, Joseph H., et al.
Publicado: (2020) -
Accelerated AI development for autonomous materials synthesis in flow
por: Epps, Robert W., et al.
Publicado: (2021) -
Machine learning of optical properties of materials – predicting spectra from images and images from spectra
por: Stein, Helge S., et al.
Publicado: (2018) -
Perspectives on automated composition of workflows in the life sciences
por: Lamprecht, Anna-Lena, et al.
Publicado: (2021)