Cargando…
Extracellular vesicles isolated from patients undergoing remote ischemic preconditioning decrease hypoxia-evoked apoptosis of cardiomyoblasts after isoflurane but not propofol exposure
Remote ischemic preconditioning (RIPC) can evoke cardioprotection following ischemia/reperfusion and this may depend on the anesthetic used. We tested whether 1) extracellular vesicles (EVs) isolated from humans undergoing RIPC protect cardiomyoblasts against hypoxia-induced apoptosis and 2) this ef...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7021285/ https://www.ncbi.nlm.nih.gov/pubmed/32059016 http://dx.doi.org/10.1371/journal.pone.0228948 |
_version_ | 1783497870133952512 |
---|---|
author | Abel, Frederik Murke, Florian Gaida, Morten Garnier, Nicolas Ochsenfarth, Crista Theiss, Carsten Thielmann, Matthias Kleinbongard, Petra Giebel, Bernd Peters, Jürgen Frey, Ulrich H. |
author_facet | Abel, Frederik Murke, Florian Gaida, Morten Garnier, Nicolas Ochsenfarth, Crista Theiss, Carsten Thielmann, Matthias Kleinbongard, Petra Giebel, Bernd Peters, Jürgen Frey, Ulrich H. |
author_sort | Abel, Frederik |
collection | PubMed |
description | Remote ischemic preconditioning (RIPC) can evoke cardioprotection following ischemia/reperfusion and this may depend on the anesthetic used. We tested whether 1) extracellular vesicles (EVs) isolated from humans undergoing RIPC protect cardiomyoblasts against hypoxia-induced apoptosis and 2) this effect is altered by cardiomyoblast exposure to isoflurane or propofol. EVs were isolated before and 60 min after RIPC or Sham from ten patients undergoing coronary artery bypass graft surgery with isoflurane anesthesia and quantified by Nanoparticle Tracking Analysis. Following EV-treatment for 6 hours under exposure of isoflurane or propofol, rat H9c2 cardiomyoblasts were cultured for 18 hours in normoxic or hypoxic atmospheres. Apoptosis was detected by flow cytometry. Serum nanoparticle concentrations in patients had increased sixty minutes after RIPC compared to Sham (2.5x10(11)±4.9x10(10) nanoparticles/ml; Sham: 1.2x10(11)±2.0x10(10); p = 0.04). Hypoxia increased apoptosis of H9c2 cells (hypoxia: 8.4%±0.6; normoxia: 2.5%±0.1; p<0.0001). RIPC-EVs decreased H9c2 cell apoptosis compared to control (apoptotic ratio: 0.83; p = 0.0429) while Sham-EVs showed no protection (apoptotic ratio: 0.97). Prior isoflurane exposure in vitro even increased protection (RIPC-EVs/control, apoptotic ratio: 0.79; p = 0.0035; Sham-EVs/control, apoptotic ratio:1.04) while propofol (50μM) abrogated protection by RIPC-EVs (RIPC-EVs/control, Apoptotic ratio: 1.01; Sham-EVs/control, apoptotic ratio: 0.94; p = 0.602). Thus, EVs isolated from patients undergoing RIPC under isoflurane anesthesia protect H9c2 cardiomyoblasts against hypoxia-evoked apoptosis and this effect is abrogated by propofol. This supports a role of human RIPC-generated EVs in cardioprotection and underlines propofol as a possible confounder in RIPC-signaling mediated by EVs. |
format | Online Article Text |
id | pubmed-7021285 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-70212852020-02-26 Extracellular vesicles isolated from patients undergoing remote ischemic preconditioning decrease hypoxia-evoked apoptosis of cardiomyoblasts after isoflurane but not propofol exposure Abel, Frederik Murke, Florian Gaida, Morten Garnier, Nicolas Ochsenfarth, Crista Theiss, Carsten Thielmann, Matthias Kleinbongard, Petra Giebel, Bernd Peters, Jürgen Frey, Ulrich H. PLoS One Research Article Remote ischemic preconditioning (RIPC) can evoke cardioprotection following ischemia/reperfusion and this may depend on the anesthetic used. We tested whether 1) extracellular vesicles (EVs) isolated from humans undergoing RIPC protect cardiomyoblasts against hypoxia-induced apoptosis and 2) this effect is altered by cardiomyoblast exposure to isoflurane or propofol. EVs were isolated before and 60 min after RIPC or Sham from ten patients undergoing coronary artery bypass graft surgery with isoflurane anesthesia and quantified by Nanoparticle Tracking Analysis. Following EV-treatment for 6 hours under exposure of isoflurane or propofol, rat H9c2 cardiomyoblasts were cultured for 18 hours in normoxic or hypoxic atmospheres. Apoptosis was detected by flow cytometry. Serum nanoparticle concentrations in patients had increased sixty minutes after RIPC compared to Sham (2.5x10(11)±4.9x10(10) nanoparticles/ml; Sham: 1.2x10(11)±2.0x10(10); p = 0.04). Hypoxia increased apoptosis of H9c2 cells (hypoxia: 8.4%±0.6; normoxia: 2.5%±0.1; p<0.0001). RIPC-EVs decreased H9c2 cell apoptosis compared to control (apoptotic ratio: 0.83; p = 0.0429) while Sham-EVs showed no protection (apoptotic ratio: 0.97). Prior isoflurane exposure in vitro even increased protection (RIPC-EVs/control, apoptotic ratio: 0.79; p = 0.0035; Sham-EVs/control, apoptotic ratio:1.04) while propofol (50μM) abrogated protection by RIPC-EVs (RIPC-EVs/control, Apoptotic ratio: 1.01; Sham-EVs/control, apoptotic ratio: 0.94; p = 0.602). Thus, EVs isolated from patients undergoing RIPC under isoflurane anesthesia protect H9c2 cardiomyoblasts against hypoxia-evoked apoptosis and this effect is abrogated by propofol. This supports a role of human RIPC-generated EVs in cardioprotection and underlines propofol as a possible confounder in RIPC-signaling mediated by EVs. Public Library of Science 2020-02-14 /pmc/articles/PMC7021285/ /pubmed/32059016 http://dx.doi.org/10.1371/journal.pone.0228948 Text en © 2020 Abel et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Abel, Frederik Murke, Florian Gaida, Morten Garnier, Nicolas Ochsenfarth, Crista Theiss, Carsten Thielmann, Matthias Kleinbongard, Petra Giebel, Bernd Peters, Jürgen Frey, Ulrich H. Extracellular vesicles isolated from patients undergoing remote ischemic preconditioning decrease hypoxia-evoked apoptosis of cardiomyoblasts after isoflurane but not propofol exposure |
title | Extracellular vesicles isolated from patients undergoing remote ischemic preconditioning decrease hypoxia-evoked apoptosis of cardiomyoblasts after isoflurane but not propofol exposure |
title_full | Extracellular vesicles isolated from patients undergoing remote ischemic preconditioning decrease hypoxia-evoked apoptosis of cardiomyoblasts after isoflurane but not propofol exposure |
title_fullStr | Extracellular vesicles isolated from patients undergoing remote ischemic preconditioning decrease hypoxia-evoked apoptosis of cardiomyoblasts after isoflurane but not propofol exposure |
title_full_unstemmed | Extracellular vesicles isolated from patients undergoing remote ischemic preconditioning decrease hypoxia-evoked apoptosis of cardiomyoblasts after isoflurane but not propofol exposure |
title_short | Extracellular vesicles isolated from patients undergoing remote ischemic preconditioning decrease hypoxia-evoked apoptosis of cardiomyoblasts after isoflurane but not propofol exposure |
title_sort | extracellular vesicles isolated from patients undergoing remote ischemic preconditioning decrease hypoxia-evoked apoptosis of cardiomyoblasts after isoflurane but not propofol exposure |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7021285/ https://www.ncbi.nlm.nih.gov/pubmed/32059016 http://dx.doi.org/10.1371/journal.pone.0228948 |
work_keys_str_mv | AT abelfrederik extracellularvesiclesisolatedfrompatientsundergoingremoteischemicpreconditioningdecreasehypoxiaevokedapoptosisofcardiomyoblastsafterisofluranebutnotpropofolexposure AT murkeflorian extracellularvesiclesisolatedfrompatientsundergoingremoteischemicpreconditioningdecreasehypoxiaevokedapoptosisofcardiomyoblastsafterisofluranebutnotpropofolexposure AT gaidamorten extracellularvesiclesisolatedfrompatientsundergoingremoteischemicpreconditioningdecreasehypoxiaevokedapoptosisofcardiomyoblastsafterisofluranebutnotpropofolexposure AT garniernicolas extracellularvesiclesisolatedfrompatientsundergoingremoteischemicpreconditioningdecreasehypoxiaevokedapoptosisofcardiomyoblastsafterisofluranebutnotpropofolexposure AT ochsenfarthcrista extracellularvesiclesisolatedfrompatientsundergoingremoteischemicpreconditioningdecreasehypoxiaevokedapoptosisofcardiomyoblastsafterisofluranebutnotpropofolexposure AT theisscarsten extracellularvesiclesisolatedfrompatientsundergoingremoteischemicpreconditioningdecreasehypoxiaevokedapoptosisofcardiomyoblastsafterisofluranebutnotpropofolexposure AT thielmannmatthias extracellularvesiclesisolatedfrompatientsundergoingremoteischemicpreconditioningdecreasehypoxiaevokedapoptosisofcardiomyoblastsafterisofluranebutnotpropofolexposure AT kleinbongardpetra extracellularvesiclesisolatedfrompatientsundergoingremoteischemicpreconditioningdecreasehypoxiaevokedapoptosisofcardiomyoblastsafterisofluranebutnotpropofolexposure AT giebelbernd extracellularvesiclesisolatedfrompatientsundergoingremoteischemicpreconditioningdecreasehypoxiaevokedapoptosisofcardiomyoblastsafterisofluranebutnotpropofolexposure AT petersjurgen extracellularvesiclesisolatedfrompatientsundergoingremoteischemicpreconditioningdecreasehypoxiaevokedapoptosisofcardiomyoblastsafterisofluranebutnotpropofolexposure AT freyulrichh extracellularvesiclesisolatedfrompatientsundergoingremoteischemicpreconditioningdecreasehypoxiaevokedapoptosisofcardiomyoblastsafterisofluranebutnotpropofolexposure |