Cargando…
Notch signaling and taxis mechanisms regulate early stage angiogenesis: A mathematical and computational model
During angiogenesis, new blood vessels sprout and grow from existing ones. This process plays a crucial role in organ development and repair, in wound healing and in numerous pathological processes such as cancer progression or diabetes. Here, we present a mathematical model of early stage angiogene...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7021322/ https://www.ncbi.nlm.nih.gov/pubmed/31986145 http://dx.doi.org/10.1371/journal.pcbi.1006919 |
_version_ | 1783497878230007808 |
---|---|
author | Vega, Rocío Carretero, Manuel Travasso, Rui D. M. Bonilla, Luis L. |
author_facet | Vega, Rocío Carretero, Manuel Travasso, Rui D. M. Bonilla, Luis L. |
author_sort | Vega, Rocío |
collection | PubMed |
description | During angiogenesis, new blood vessels sprout and grow from existing ones. This process plays a crucial role in organ development and repair, in wound healing and in numerous pathological processes such as cancer progression or diabetes. Here, we present a mathematical model of early stage angiogenesis that permits exploration of the relative importance of mechanical, chemical and cellular cues. Endothelial cells proliferate and move over an extracellular matrix by following external gradients of Vessel Endothelial Growth Factor, adhesion and stiffness, which are incorporated to a Cellular Potts model with a finite element description of elasticity. The dynamics of Notch signaling involving Delta-4 and Jagged-1 ligands determines tip cell selection and vessel branching. Through their production rates, competing Jagged-Notch and Delta-Notch dynamics determine the influence of lateral inhibition and lateral induction on the selection of cellular phenotypes, branching of blood vessels, anastomosis (fusion of blood vessels) and angiogenesis velocity. Anastomosis may be favored or impeded depending on the mechanical configuration of strain vectors in the ECM near tip cells. Numerical simulations demonstrate that increasing Jagged production results in pathological vasculatures with thinner and more abundant vessels, which can be compensated by augmenting the production of Delta ligands. |
format | Online Article Text |
id | pubmed-7021322 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-70213222020-02-26 Notch signaling and taxis mechanisms regulate early stage angiogenesis: A mathematical and computational model Vega, Rocío Carretero, Manuel Travasso, Rui D. M. Bonilla, Luis L. PLoS Comput Biol Research Article During angiogenesis, new blood vessels sprout and grow from existing ones. This process plays a crucial role in organ development and repair, in wound healing and in numerous pathological processes such as cancer progression or diabetes. Here, we present a mathematical model of early stage angiogenesis that permits exploration of the relative importance of mechanical, chemical and cellular cues. Endothelial cells proliferate and move over an extracellular matrix by following external gradients of Vessel Endothelial Growth Factor, adhesion and stiffness, which are incorporated to a Cellular Potts model with a finite element description of elasticity. The dynamics of Notch signaling involving Delta-4 and Jagged-1 ligands determines tip cell selection and vessel branching. Through their production rates, competing Jagged-Notch and Delta-Notch dynamics determine the influence of lateral inhibition and lateral induction on the selection of cellular phenotypes, branching of blood vessels, anastomosis (fusion of blood vessels) and angiogenesis velocity. Anastomosis may be favored or impeded depending on the mechanical configuration of strain vectors in the ECM near tip cells. Numerical simulations demonstrate that increasing Jagged production results in pathological vasculatures with thinner and more abundant vessels, which can be compensated by augmenting the production of Delta ligands. Public Library of Science 2020-01-27 /pmc/articles/PMC7021322/ /pubmed/31986145 http://dx.doi.org/10.1371/journal.pcbi.1006919 Text en © 2020 Vega et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Vega, Rocío Carretero, Manuel Travasso, Rui D. M. Bonilla, Luis L. Notch signaling and taxis mechanisms regulate early stage angiogenesis: A mathematical and computational model |
title | Notch signaling and taxis mechanisms regulate early stage angiogenesis: A mathematical and computational model |
title_full | Notch signaling and taxis mechanisms regulate early stage angiogenesis: A mathematical and computational model |
title_fullStr | Notch signaling and taxis mechanisms regulate early stage angiogenesis: A mathematical and computational model |
title_full_unstemmed | Notch signaling and taxis mechanisms regulate early stage angiogenesis: A mathematical and computational model |
title_short | Notch signaling and taxis mechanisms regulate early stage angiogenesis: A mathematical and computational model |
title_sort | notch signaling and taxis mechanisms regulate early stage angiogenesis: a mathematical and computational model |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7021322/ https://www.ncbi.nlm.nih.gov/pubmed/31986145 http://dx.doi.org/10.1371/journal.pcbi.1006919 |
work_keys_str_mv | AT vegarocio notchsignalingandtaxismechanismsregulateearlystageangiogenesisamathematicalandcomputationalmodel AT carreteromanuel notchsignalingandtaxismechanismsregulateearlystageangiogenesisamathematicalandcomputationalmodel AT travassoruidm notchsignalingandtaxismechanismsregulateearlystageangiogenesisamathematicalandcomputationalmodel AT bonillaluisl notchsignalingandtaxismechanismsregulateearlystageangiogenesisamathematicalandcomputationalmodel |