Cargando…

Little if any role of male gonadal androgens in ontogeny of sexual dimorphism in body size and cranial casque in chameleons

Proximate control of the development of sexual dimorphism is still hotly debated in reptiles. In some squamates, many male-typical exaggerated traits including body size were assumed to be controlled by masculinization by male gonadal androgens. We performed a manipulative experiment to test the imp...

Descripción completa

Detalles Bibliográficos
Autores principales: Bauerová, Anna, Kratochvíl, Lukáš, Kubička, Lukáš
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7021717/
https://www.ncbi.nlm.nih.gov/pubmed/32060387
http://dx.doi.org/10.1038/s41598-020-59501-6
Descripción
Sumario:Proximate control of the development of sexual dimorphism is still hotly debated in reptiles. In some squamates, many male-typical exaggerated traits including body size were assumed to be controlled by masculinization by male gonadal androgens. We performed a manipulative experiment to test the importance of this mechanism in the development of pronounced sexual differences in body size and size of head casque in the chameleon Chamaeleo calyptratus. Castrated males attained male-typical body size highly deviating from the body size of control females. Ontogenetic allometries of casque size on head length revealed that sexes depart considerably in casque growth later in the ontogeny; however, castrated males still follow male-typical casque growth. Paradoxically, exogenous testosterone led in females to slight increase of casque size, which might reflect interference with the feminizing effects of female gonadal hormones. The results in males strongly suggest that masculinization by male gonadal androgens during growth is not required for the development of sexual dimorphism in body size and casque size in the chameleon. The ontogeny of sexually dimorphic body size and exaggerated traits in at least some squamates is likely controlled by other proximate mechanism, possibly by feminization by ovarian hormones.