Cargando…

Glass transition temperature from the chemical structure of conjugated polymers

The glass transition temperature (T(g)) is a key property that dictates the applicability of conjugated polymers. The T(g) demarks the transition into a brittle glassy state, making its accurate prediction for conjugated polymers crucial for the design of soft, stretchable, or flexible electronics....

Descripción completa

Detalles Bibliográficos
Autores principales: Xie, Renxuan, Weisen, Albree R., Lee, Youngmin, Aplan, Melissa A., Fenton, Abigail M., Masucci, Ashley E., Kempe, Fabian, Sommer, Michael, Pester, Christian W., Colby, Ralph H., Gomez, Enrique D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7021822/
https://www.ncbi.nlm.nih.gov/pubmed/32060331
http://dx.doi.org/10.1038/s41467-020-14656-8
_version_ 1783497953796685824
author Xie, Renxuan
Weisen, Albree R.
Lee, Youngmin
Aplan, Melissa A.
Fenton, Abigail M.
Masucci, Ashley E.
Kempe, Fabian
Sommer, Michael
Pester, Christian W.
Colby, Ralph H.
Gomez, Enrique D.
author_facet Xie, Renxuan
Weisen, Albree R.
Lee, Youngmin
Aplan, Melissa A.
Fenton, Abigail M.
Masucci, Ashley E.
Kempe, Fabian
Sommer, Michael
Pester, Christian W.
Colby, Ralph H.
Gomez, Enrique D.
author_sort Xie, Renxuan
collection PubMed
description The glass transition temperature (T(g)) is a key property that dictates the applicability of conjugated polymers. The T(g) demarks the transition into a brittle glassy state, making its accurate prediction for conjugated polymers crucial for the design of soft, stretchable, or flexible electronics. Here we show that a single adjustable parameter can be used to build a relationship between the T(g) and the molecular structure of 32 semiflexible (mostly conjugated) polymers that differ drastically in aromatic backbone and alkyl side chain chemistry. An effective mobility value, ζ, is calculated using an assigned atomic mobility value within each repeat unit. The only adjustable parameter in the calculation of ζ is the ratio of mobility between conjugated and non-conjugated atoms. We show that ζ correlates strongly to the T(g), and that this simple method predicts the T(g) with a root-mean-square error of 13 °C for conjugated polymers with alkyl side chains.
format Online
Article
Text
id pubmed-7021822
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-70218222020-02-21 Glass transition temperature from the chemical structure of conjugated polymers Xie, Renxuan Weisen, Albree R. Lee, Youngmin Aplan, Melissa A. Fenton, Abigail M. Masucci, Ashley E. Kempe, Fabian Sommer, Michael Pester, Christian W. Colby, Ralph H. Gomez, Enrique D. Nat Commun Article The glass transition temperature (T(g)) is a key property that dictates the applicability of conjugated polymers. The T(g) demarks the transition into a brittle glassy state, making its accurate prediction for conjugated polymers crucial for the design of soft, stretchable, or flexible electronics. Here we show that a single adjustable parameter can be used to build a relationship between the T(g) and the molecular structure of 32 semiflexible (mostly conjugated) polymers that differ drastically in aromatic backbone and alkyl side chain chemistry. An effective mobility value, ζ, is calculated using an assigned atomic mobility value within each repeat unit. The only adjustable parameter in the calculation of ζ is the ratio of mobility between conjugated and non-conjugated atoms. We show that ζ correlates strongly to the T(g), and that this simple method predicts the T(g) with a root-mean-square error of 13 °C for conjugated polymers with alkyl side chains. Nature Publishing Group UK 2020-02-14 /pmc/articles/PMC7021822/ /pubmed/32060331 http://dx.doi.org/10.1038/s41467-020-14656-8 Text en © The Author(s) 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Xie, Renxuan
Weisen, Albree R.
Lee, Youngmin
Aplan, Melissa A.
Fenton, Abigail M.
Masucci, Ashley E.
Kempe, Fabian
Sommer, Michael
Pester, Christian W.
Colby, Ralph H.
Gomez, Enrique D.
Glass transition temperature from the chemical structure of conjugated polymers
title Glass transition temperature from the chemical structure of conjugated polymers
title_full Glass transition temperature from the chemical structure of conjugated polymers
title_fullStr Glass transition temperature from the chemical structure of conjugated polymers
title_full_unstemmed Glass transition temperature from the chemical structure of conjugated polymers
title_short Glass transition temperature from the chemical structure of conjugated polymers
title_sort glass transition temperature from the chemical structure of conjugated polymers
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7021822/
https://www.ncbi.nlm.nih.gov/pubmed/32060331
http://dx.doi.org/10.1038/s41467-020-14656-8
work_keys_str_mv AT xierenxuan glasstransitiontemperaturefromthechemicalstructureofconjugatedpolymers
AT weisenalbreer glasstransitiontemperaturefromthechemicalstructureofconjugatedpolymers
AT leeyoungmin glasstransitiontemperaturefromthechemicalstructureofconjugatedpolymers
AT aplanmelissaa glasstransitiontemperaturefromthechemicalstructureofconjugatedpolymers
AT fentonabigailm glasstransitiontemperaturefromthechemicalstructureofconjugatedpolymers
AT masucciashleye glasstransitiontemperaturefromthechemicalstructureofconjugatedpolymers
AT kempefabian glasstransitiontemperaturefromthechemicalstructureofconjugatedpolymers
AT sommermichael glasstransitiontemperaturefromthechemicalstructureofconjugatedpolymers
AT pesterchristianw glasstransitiontemperaturefromthechemicalstructureofconjugatedpolymers
AT colbyralphh glasstransitiontemperaturefromthechemicalstructureofconjugatedpolymers
AT gomezenriqued glasstransitiontemperaturefromthechemicalstructureofconjugatedpolymers