Cargando…
Short- and long-term impacts of variable hypoxia exposures on kelp forest sea urchins
Climate change is altering the intensity and variability of environmental stress that organisms and ecosystems experience, but effects of changing stress regimes are not well understood. We examined impacts of constant and variable sublethal hypoxia exposures on multiple biological processes in the...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7021826/ https://www.ncbi.nlm.nih.gov/pubmed/32060309 http://dx.doi.org/10.1038/s41598-020-59483-5 |
Sumario: | Climate change is altering the intensity and variability of environmental stress that organisms and ecosystems experience, but effects of changing stress regimes are not well understood. We examined impacts of constant and variable sublethal hypoxia exposures on multiple biological processes in the sea urchin Strongylocentrotus purpuratus, a key grazer in California Current kelp forests, which experience high variability in physical conditions. We quantified metabolic rates, grazing, growth, calcification, spine regeneration, and gonad production under constant, 3-hour variable, and 6-hour variable exposures to sublethal hypoxia, and compared responses for each hypoxia regime to normoxic conditions. Sea urchins in constant hypoxia maintained baseline metabolic rates, but had lower grazing, gonad development, and calcification rates than those in ambient conditions. The sublethal impacts of variable hypoxia differed among biological processes. Spine regrowth was reduced under all hypoxia treatments, calcification rates under variable hypoxia were intermediate between normoxia and constant hypoxia, and gonad production correlated negatively with continuous time under hypoxia. Therefore, exposure variability can differentially modulate the impacts of sublethal hypoxia, and may impact sea urchin populations and ecosystems via reduced feeding and reproduction. Addressing realistic, multifaceted stressor exposures and multiple biological responses is crucial for understanding climate change impacts on species and ecosystems. |
---|