Cargando…
Quality by Design Micro-Engineering Optimisation of NSAID-Loaded Electrospun Fibrous Patches
The purpose of this study was to apply the Quality by Design (QbD) approach to the electrospinning of fibres loaded with the nonsteroidal anti-inflammatory drugs (NSAIDs) indomethacin (INDO) and diclofenac sodium (DICLO). A Quality Target Product Profile (QTPP) was made, and risk assessments (prelim...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7022274/ https://www.ncbi.nlm.nih.gov/pubmed/31861296 http://dx.doi.org/10.3390/pharmaceutics12010002 |
_version_ | 1783497985616773120 |
---|---|
author | Nazari, Kazem Mehta, Prina Arshad, Muhammad Sohail Ahmed, Shahabuddin Andriotis, Eleftherios G. Singh, Neenu Qutachi, Omar Chang, Ming-Wei Fatouros, Dimitrios G. Ahmad, Zeeshan |
author_facet | Nazari, Kazem Mehta, Prina Arshad, Muhammad Sohail Ahmed, Shahabuddin Andriotis, Eleftherios G. Singh, Neenu Qutachi, Omar Chang, Ming-Wei Fatouros, Dimitrios G. Ahmad, Zeeshan |
author_sort | Nazari, Kazem |
collection | PubMed |
description | The purpose of this study was to apply the Quality by Design (QbD) approach to the electrospinning of fibres loaded with the nonsteroidal anti-inflammatory drugs (NSAIDs) indomethacin (INDO) and diclofenac sodium (DICLO). A Quality Target Product Profile (QTPP) was made, and risk assessments (preliminary hazard analysis) were conducted to identify the impact of material attributes and process parameters on the critical quality attributes (CQAs) of the fibres. A full factorial design of experiments (DoE) of 20 runs was built, which was used to carry out experiments. The following factors were assessed: Drugs, voltage, flow rate, and the distance between the processing needle and collector. Release studies exhibited INDO fibres had greater total release of active drug compared to DICLO fibres. Voltage and distance were found to be the most significant factors of the experiment. Multivariate statistical analytical software helped to build six feasible design spaces and two flexible, universal design spaces for both drugs, at distances of 5 cm and 12.5 cm, along with a flexible control strategy. The current findings and their analysis confirm that QbD is a viable and invaluable tool to enhance product and process understanding of electrospinning for the assurance of high-quality fibres. |
format | Online Article Text |
id | pubmed-7022274 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-70222742020-03-09 Quality by Design Micro-Engineering Optimisation of NSAID-Loaded Electrospun Fibrous Patches Nazari, Kazem Mehta, Prina Arshad, Muhammad Sohail Ahmed, Shahabuddin Andriotis, Eleftherios G. Singh, Neenu Qutachi, Omar Chang, Ming-Wei Fatouros, Dimitrios G. Ahmad, Zeeshan Pharmaceutics Article The purpose of this study was to apply the Quality by Design (QbD) approach to the electrospinning of fibres loaded with the nonsteroidal anti-inflammatory drugs (NSAIDs) indomethacin (INDO) and diclofenac sodium (DICLO). A Quality Target Product Profile (QTPP) was made, and risk assessments (preliminary hazard analysis) were conducted to identify the impact of material attributes and process parameters on the critical quality attributes (CQAs) of the fibres. A full factorial design of experiments (DoE) of 20 runs was built, which was used to carry out experiments. The following factors were assessed: Drugs, voltage, flow rate, and the distance between the processing needle and collector. Release studies exhibited INDO fibres had greater total release of active drug compared to DICLO fibres. Voltage and distance were found to be the most significant factors of the experiment. Multivariate statistical analytical software helped to build six feasible design spaces and two flexible, universal design spaces for both drugs, at distances of 5 cm and 12.5 cm, along with a flexible control strategy. The current findings and their analysis confirm that QbD is a viable and invaluable tool to enhance product and process understanding of electrospinning for the assurance of high-quality fibres. MDPI 2019-12-18 /pmc/articles/PMC7022274/ /pubmed/31861296 http://dx.doi.org/10.3390/pharmaceutics12010002 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Nazari, Kazem Mehta, Prina Arshad, Muhammad Sohail Ahmed, Shahabuddin Andriotis, Eleftherios G. Singh, Neenu Qutachi, Omar Chang, Ming-Wei Fatouros, Dimitrios G. Ahmad, Zeeshan Quality by Design Micro-Engineering Optimisation of NSAID-Loaded Electrospun Fibrous Patches |
title | Quality by Design Micro-Engineering Optimisation of NSAID-Loaded Electrospun Fibrous Patches |
title_full | Quality by Design Micro-Engineering Optimisation of NSAID-Loaded Electrospun Fibrous Patches |
title_fullStr | Quality by Design Micro-Engineering Optimisation of NSAID-Loaded Electrospun Fibrous Patches |
title_full_unstemmed | Quality by Design Micro-Engineering Optimisation of NSAID-Loaded Electrospun Fibrous Patches |
title_short | Quality by Design Micro-Engineering Optimisation of NSAID-Loaded Electrospun Fibrous Patches |
title_sort | quality by design micro-engineering optimisation of nsaid-loaded electrospun fibrous patches |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7022274/ https://www.ncbi.nlm.nih.gov/pubmed/31861296 http://dx.doi.org/10.3390/pharmaceutics12010002 |
work_keys_str_mv | AT nazarikazem qualitybydesignmicroengineeringoptimisationofnsaidloadedelectrospunfibrouspatches AT mehtaprina qualitybydesignmicroengineeringoptimisationofnsaidloadedelectrospunfibrouspatches AT arshadmuhammadsohail qualitybydesignmicroengineeringoptimisationofnsaidloadedelectrospunfibrouspatches AT ahmedshahabuddin qualitybydesignmicroengineeringoptimisationofnsaidloadedelectrospunfibrouspatches AT andriotiseleftheriosg qualitybydesignmicroengineeringoptimisationofnsaidloadedelectrospunfibrouspatches AT singhneenu qualitybydesignmicroengineeringoptimisationofnsaidloadedelectrospunfibrouspatches AT qutachiomar qualitybydesignmicroengineeringoptimisationofnsaidloadedelectrospunfibrouspatches AT changmingwei qualitybydesignmicroengineeringoptimisationofnsaidloadedelectrospunfibrouspatches AT fatourosdimitriosg qualitybydesignmicroengineeringoptimisationofnsaidloadedelectrospunfibrouspatches AT ahmadzeeshan qualitybydesignmicroengineeringoptimisationofnsaidloadedelectrospunfibrouspatches |