Cargando…

Vitreous Antioxidants, Degeneration, and Vitreo-Retinopathy: Exploring the Links

The transparent vitreous body, which occupies about 80% of the eye’s volume, is laden with numerous enzymatic and non-enzymatic antioxidants that could protect the eye from oxidative stress and disease. Aging is associated with degeneration of vitreous structure as well as a reduction in its antioxi...

Descripción completa

Detalles Bibliográficos
Autores principales: Ankamah, Emmanuel, Sebag, J., Ng, Eugene, Nolan, John M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7022282/
https://www.ncbi.nlm.nih.gov/pubmed/31861871
http://dx.doi.org/10.3390/antiox9010007
Descripción
Sumario:The transparent vitreous body, which occupies about 80% of the eye’s volume, is laden with numerous enzymatic and non-enzymatic antioxidants that could protect the eye from oxidative stress and disease. Aging is associated with degeneration of vitreous structure as well as a reduction in its antioxidant capacity. A growing body of evidence suggests these age-related changes may be the precursor of numerous oxidative stress-induced vitreo-retinopathies, including vision degrading myodesopsia, the clinically significant entoptic phenomena that can result from advanced vitreous degeneration. Adequate intravitreal antioxidant levels may be protective against vitreous degeneration, possibly preventing and even improving vision degrading myodesopsia as well as mitigating various other vitreo-retinopathies. The present article is, therefore, a review of the different antioxidant molecules within vitreous and the inter-relationships between vitreous antioxidant capacity and degeneration.