Cargando…

Generalized Stacking Fault Energy of Al-Doped CrMnFeCoNi High-Entropy Alloy

Using first-principles methods, we investigate the effect of Al on the generalized stacking fault energy of face-centered cubic (fcc) CrMnFeCoNi high-entropy alloy as a function of temperature. Upon Al addition or temperature increase, the intrinsic and extrinsic stacking fault energies increase, wh...

Descripción completa

Detalles Bibliográficos
Autores principales: Sun, Xun, Zhang, Hualei, Li, Wei, Ding, Xiangdong, Wang, Yunzhi, Vitos, Levente
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7022399/
https://www.ncbi.nlm.nih.gov/pubmed/31887990
http://dx.doi.org/10.3390/nano10010059
_version_ 1783498006631284736
author Sun, Xun
Zhang, Hualei
Li, Wei
Ding, Xiangdong
Wang, Yunzhi
Vitos, Levente
author_facet Sun, Xun
Zhang, Hualei
Li, Wei
Ding, Xiangdong
Wang, Yunzhi
Vitos, Levente
author_sort Sun, Xun
collection PubMed
description Using first-principles methods, we investigate the effect of Al on the generalized stacking fault energy of face-centered cubic (fcc) CrMnFeCoNi high-entropy alloy as a function of temperature. Upon Al addition or temperature increase, the intrinsic and extrinsic stacking fault energies increase, whereas the unstable stacking fault and unstable twinning fault energies decrease monotonously. The thermodynamic expression for the intrinsic stacking fault energy in combination with the theoretical Gibbs energy difference between the hexagonal close packed (hcp) and fcc lattices allows one to determine the so-called hcp-fcc interfacial energy. The results show that the interfacial energy is small and only weakly dependent on temperature and Al content. Two parameters are adopted to measure the nano-twinning ability of the present high-entropy alloys (HEAs). Both measures indicate that the twinability decreases with increasing temperature or Al content. The present study provides systematic theoretical plasticity parameters for modeling and designing high entropy alloys with specific mechanical properties.
format Online
Article
Text
id pubmed-7022399
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-70223992020-03-09 Generalized Stacking Fault Energy of Al-Doped CrMnFeCoNi High-Entropy Alloy Sun, Xun Zhang, Hualei Li, Wei Ding, Xiangdong Wang, Yunzhi Vitos, Levente Nanomaterials (Basel) Communication Using first-principles methods, we investigate the effect of Al on the generalized stacking fault energy of face-centered cubic (fcc) CrMnFeCoNi high-entropy alloy as a function of temperature. Upon Al addition or temperature increase, the intrinsic and extrinsic stacking fault energies increase, whereas the unstable stacking fault and unstable twinning fault energies decrease monotonously. The thermodynamic expression for the intrinsic stacking fault energy in combination with the theoretical Gibbs energy difference between the hexagonal close packed (hcp) and fcc lattices allows one to determine the so-called hcp-fcc interfacial energy. The results show that the interfacial energy is small and only weakly dependent on temperature and Al content. Two parameters are adopted to measure the nano-twinning ability of the present high-entropy alloys (HEAs). Both measures indicate that the twinability decreases with increasing temperature or Al content. The present study provides systematic theoretical plasticity parameters for modeling and designing high entropy alloys with specific mechanical properties. MDPI 2019-12-26 /pmc/articles/PMC7022399/ /pubmed/31887990 http://dx.doi.org/10.3390/nano10010059 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Communication
Sun, Xun
Zhang, Hualei
Li, Wei
Ding, Xiangdong
Wang, Yunzhi
Vitos, Levente
Generalized Stacking Fault Energy of Al-Doped CrMnFeCoNi High-Entropy Alloy
title Generalized Stacking Fault Energy of Al-Doped CrMnFeCoNi High-Entropy Alloy
title_full Generalized Stacking Fault Energy of Al-Doped CrMnFeCoNi High-Entropy Alloy
title_fullStr Generalized Stacking Fault Energy of Al-Doped CrMnFeCoNi High-Entropy Alloy
title_full_unstemmed Generalized Stacking Fault Energy of Al-Doped CrMnFeCoNi High-Entropy Alloy
title_short Generalized Stacking Fault Energy of Al-Doped CrMnFeCoNi High-Entropy Alloy
title_sort generalized stacking fault energy of al-doped crmnfeconi high-entropy alloy
topic Communication
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7022399/
https://www.ncbi.nlm.nih.gov/pubmed/31887990
http://dx.doi.org/10.3390/nano10010059
work_keys_str_mv AT sunxun generalizedstackingfaultenergyofaldopedcrmnfeconihighentropyalloy
AT zhanghualei generalizedstackingfaultenergyofaldopedcrmnfeconihighentropyalloy
AT liwei generalizedstackingfaultenergyofaldopedcrmnfeconihighentropyalloy
AT dingxiangdong generalizedstackingfaultenergyofaldopedcrmnfeconihighentropyalloy
AT wangyunzhi generalizedstackingfaultenergyofaldopedcrmnfeconihighentropyalloy
AT vitoslevente generalizedstackingfaultenergyofaldopedcrmnfeconihighentropyalloy