Cargando…

Design of Monovalent Ion Selective Membranes for Reducing the Impacts of Multivalent Ions in Reverse Electrodialysis

Reverse electrodialysis (RED) represents one of the most promising membrane-based technologies for clean and renewable energy production from mixing water solutions. However, the presence of multivalent ions in natural water drastically reduces system performance, in particular, the open-circuit vol...

Descripción completa

Detalles Bibliográficos
Autores principales: Besha, Abreham Tesfaye, Tsehaye, Misgina Tilahun, Aili, David, Zhang, Wenjuan, Tufa, Ramato Ashu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7022468/
https://www.ncbi.nlm.nih.gov/pubmed/31906203
http://dx.doi.org/10.3390/membranes10010007
Descripción
Sumario:Reverse electrodialysis (RED) represents one of the most promising membrane-based technologies for clean and renewable energy production from mixing water solutions. However, the presence of multivalent ions in natural water drastically reduces system performance, in particular, the open-circuit voltage (OCV) and the output power. This effect is largely described by the “uphill transport” phenomenon, in which multivalent ions are transported against the concentration gradient. In this work, recent advances in the investigation of the impact of multivalent ions on power generation by RED are systematically reviewed along with possible strategies to overcome this challenge. In particular, the use of monovalent ion-selective membranes represents a promising alternative to reduce the negative impact of multivalent ions given the availability of low-cost materials and an easy route of membrane synthesis. A thorough assessment of the materials and methodologies used to prepare monovalent selective ion exchange membranes (both cation and anion exchange membranes) for applications in (reverse) electrodialysis is performed. Moreover, transport mechanisms under conditions of extreme salinity gradient are analyzed and compared for a better understanding of the design criteria. The ultimate goal of the present work is to propose a prospective research direction on the development of new membrane materials for effective implementation of RED under natural feed conditions.