Cargando…
In Situ Construction of Ag/TiO(2)/g-C(3)N(4) Heterojunction Nanocomposite Based on Hierarchical Co-Assembly with Sustainable Hydrogen Evolution
The construction of heterojunctions provides a promising strategy to improve photocatalytic hydrogen evolution. However, how to fabricate a nanoscale TiO(2)/g-C(3)N(4) heterostructure and hinder the aggregation of bulk g-C(3)N(4) using simple methods remains a challenge. In this work, we use a simpl...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7022471/ https://www.ncbi.nlm.nih.gov/pubmed/31861272 http://dx.doi.org/10.3390/nano10010001 |
_version_ | 1783498022673448960 |
---|---|
author | Geng, Rui Yin, Juanjuan Zhou, Jingxin Jiao, Tifeng Feng, Yao Zhang, Lexin Chen, Yan Bai, Zhenhua Peng, Qiuming |
author_facet | Geng, Rui Yin, Juanjuan Zhou, Jingxin Jiao, Tifeng Feng, Yao Zhang, Lexin Chen, Yan Bai, Zhenhua Peng, Qiuming |
author_sort | Geng, Rui |
collection | PubMed |
description | The construction of heterojunctions provides a promising strategy to improve photocatalytic hydrogen evolution. However, how to fabricate a nanoscale TiO(2)/g-C(3)N(4) heterostructure and hinder the aggregation of bulk g-C(3)N(4) using simple methods remains a challenge. In this work, we use a simple in situ construction method to design a heterojunction model based on molecular self-assembly, which uses a small molecule matrix for self-integration, including coordination donors (AgNO(3)), inorganic titanium source (Ti(SO(4))(2)) and g-C(3)N(4) precursor (melamine). The self-assembled porous g-C(3)N(4) nanotube can hamper carrier aggregation and it provides numerous catalytic active sites, mainly via the coordination of Ag(+) ions. Meanwhile, the TiO(2) NPs are easily mineralized on the nanotube template in dispersive distribution to form a heterostructure via an N–Ti bond of protonation, which contributes to shortening the interfacial carrier transport, resulting in enhanced electron-hole pairs separation. Originating from all of the above synergistic effects, the obtained Ag/TiO(2)/g-C(3)N(4) heterogenous photocatalysts exhibit an enhanced H(2) evolution rate with excellent sustainability 20.6-fold-over pure g-C(3)N(4). Our report provides a feasible and simple strategy to fabricate a nanoscale heterojunction incorporating g-C(3)N(4), and has great potential in environmental protection and water splitting. |
format | Online Article Text |
id | pubmed-7022471 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-70224712020-03-09 In Situ Construction of Ag/TiO(2)/g-C(3)N(4) Heterojunction Nanocomposite Based on Hierarchical Co-Assembly with Sustainable Hydrogen Evolution Geng, Rui Yin, Juanjuan Zhou, Jingxin Jiao, Tifeng Feng, Yao Zhang, Lexin Chen, Yan Bai, Zhenhua Peng, Qiuming Nanomaterials (Basel) Article The construction of heterojunctions provides a promising strategy to improve photocatalytic hydrogen evolution. However, how to fabricate a nanoscale TiO(2)/g-C(3)N(4) heterostructure and hinder the aggregation of bulk g-C(3)N(4) using simple methods remains a challenge. In this work, we use a simple in situ construction method to design a heterojunction model based on molecular self-assembly, which uses a small molecule matrix for self-integration, including coordination donors (AgNO(3)), inorganic titanium source (Ti(SO(4))(2)) and g-C(3)N(4) precursor (melamine). The self-assembled porous g-C(3)N(4) nanotube can hamper carrier aggregation and it provides numerous catalytic active sites, mainly via the coordination of Ag(+) ions. Meanwhile, the TiO(2) NPs are easily mineralized on the nanotube template in dispersive distribution to form a heterostructure via an N–Ti bond of protonation, which contributes to shortening the interfacial carrier transport, resulting in enhanced electron-hole pairs separation. Originating from all of the above synergistic effects, the obtained Ag/TiO(2)/g-C(3)N(4) heterogenous photocatalysts exhibit an enhanced H(2) evolution rate with excellent sustainability 20.6-fold-over pure g-C(3)N(4). Our report provides a feasible and simple strategy to fabricate a nanoscale heterojunction incorporating g-C(3)N(4), and has great potential in environmental protection and water splitting. MDPI 2019-12-18 /pmc/articles/PMC7022471/ /pubmed/31861272 http://dx.doi.org/10.3390/nano10010001 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Geng, Rui Yin, Juanjuan Zhou, Jingxin Jiao, Tifeng Feng, Yao Zhang, Lexin Chen, Yan Bai, Zhenhua Peng, Qiuming In Situ Construction of Ag/TiO(2)/g-C(3)N(4) Heterojunction Nanocomposite Based on Hierarchical Co-Assembly with Sustainable Hydrogen Evolution |
title | In Situ Construction of Ag/TiO(2)/g-C(3)N(4) Heterojunction Nanocomposite Based on Hierarchical Co-Assembly with Sustainable Hydrogen Evolution |
title_full | In Situ Construction of Ag/TiO(2)/g-C(3)N(4) Heterojunction Nanocomposite Based on Hierarchical Co-Assembly with Sustainable Hydrogen Evolution |
title_fullStr | In Situ Construction of Ag/TiO(2)/g-C(3)N(4) Heterojunction Nanocomposite Based on Hierarchical Co-Assembly with Sustainable Hydrogen Evolution |
title_full_unstemmed | In Situ Construction of Ag/TiO(2)/g-C(3)N(4) Heterojunction Nanocomposite Based on Hierarchical Co-Assembly with Sustainable Hydrogen Evolution |
title_short | In Situ Construction of Ag/TiO(2)/g-C(3)N(4) Heterojunction Nanocomposite Based on Hierarchical Co-Assembly with Sustainable Hydrogen Evolution |
title_sort | in situ construction of ag/tio(2)/g-c(3)n(4) heterojunction nanocomposite based on hierarchical co-assembly with sustainable hydrogen evolution |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7022471/ https://www.ncbi.nlm.nih.gov/pubmed/31861272 http://dx.doi.org/10.3390/nano10010001 |
work_keys_str_mv | AT gengrui insituconstructionofagtio2gc3n4heterojunctionnanocompositebasedonhierarchicalcoassemblywithsustainablehydrogenevolution AT yinjuanjuan insituconstructionofagtio2gc3n4heterojunctionnanocompositebasedonhierarchicalcoassemblywithsustainablehydrogenevolution AT zhoujingxin insituconstructionofagtio2gc3n4heterojunctionnanocompositebasedonhierarchicalcoassemblywithsustainablehydrogenevolution AT jiaotifeng insituconstructionofagtio2gc3n4heterojunctionnanocompositebasedonhierarchicalcoassemblywithsustainablehydrogenevolution AT fengyao insituconstructionofagtio2gc3n4heterojunctionnanocompositebasedonhierarchicalcoassemblywithsustainablehydrogenevolution AT zhanglexin insituconstructionofagtio2gc3n4heterojunctionnanocompositebasedonhierarchicalcoassemblywithsustainablehydrogenevolution AT chenyan insituconstructionofagtio2gc3n4heterojunctionnanocompositebasedonhierarchicalcoassemblywithsustainablehydrogenevolution AT baizhenhua insituconstructionofagtio2gc3n4heterojunctionnanocompositebasedonhierarchicalcoassemblywithsustainablehydrogenevolution AT pengqiuming insituconstructionofagtio2gc3n4heterojunctionnanocompositebasedonhierarchicalcoassemblywithsustainablehydrogenevolution |