Cargando…
Research Progress on Polymer Solar Cells Based on PEDOT:PSS Electrodes
Solution-processed polymer solar cells (PSCs) have attracted dramatically increasing attention over the past few decades owing to their advantages of low cost, solution processability, light weight, and excellent flexibility. Recent progress in materials synthesis and devices engineering has boosted...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7022521/ https://www.ncbi.nlm.nih.gov/pubmed/31936017 http://dx.doi.org/10.3390/polym12010145 |
_version_ | 1783498034372411392 |
---|---|
author | Hu, Lin Song, Jiaxing Yin, Xinxing Su, Zhen Li, Zaifang |
author_facet | Hu, Lin Song, Jiaxing Yin, Xinxing Su, Zhen Li, Zaifang |
author_sort | Hu, Lin |
collection | PubMed |
description | Solution-processed polymer solar cells (PSCs) have attracted dramatically increasing attention over the past few decades owing to their advantages of low cost, solution processability, light weight, and excellent flexibility. Recent progress in materials synthesis and devices engineering has boosted the power conversion efficiency (PCE) of single-junction PSCs over 17%. As an emerging technology, it is still a challenge to prepare solution-processed flexible electrodes for attractive flexible PSCs. Poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS) is one of the most promising candidates for electrodes due to its high conductivity (>4000 S/cm), excellent transmittance (>90%), intrinsically high work function (W(F) > 5.0 eV), and aqueous solution processability. To date, a great number of single-junction PSCs based on PEDOT:PSS electrodes have realized a PCE over 12%. In this review, we introduce the current research on the conductive complex PEDOT:PSS as well as trace the development of PEDOT:PSS used in electrodes for high performance PSCs and perovskite solar cells. We also discuss and comment on the aspects of conductivity, transmittance, work-function adjustment, film preparing methods, and device fabrications. A perspective on the challenges and future directions in this field is be offered finally. |
format | Online Article Text |
id | pubmed-7022521 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-70225212020-03-09 Research Progress on Polymer Solar Cells Based on PEDOT:PSS Electrodes Hu, Lin Song, Jiaxing Yin, Xinxing Su, Zhen Li, Zaifang Polymers (Basel) Review Solution-processed polymer solar cells (PSCs) have attracted dramatically increasing attention over the past few decades owing to their advantages of low cost, solution processability, light weight, and excellent flexibility. Recent progress in materials synthesis and devices engineering has boosted the power conversion efficiency (PCE) of single-junction PSCs over 17%. As an emerging technology, it is still a challenge to prepare solution-processed flexible electrodes for attractive flexible PSCs. Poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS) is one of the most promising candidates for electrodes due to its high conductivity (>4000 S/cm), excellent transmittance (>90%), intrinsically high work function (W(F) > 5.0 eV), and aqueous solution processability. To date, a great number of single-junction PSCs based on PEDOT:PSS electrodes have realized a PCE over 12%. In this review, we introduce the current research on the conductive complex PEDOT:PSS as well as trace the development of PEDOT:PSS used in electrodes for high performance PSCs and perovskite solar cells. We also discuss and comment on the aspects of conductivity, transmittance, work-function adjustment, film preparing methods, and device fabrications. A perspective on the challenges and future directions in this field is be offered finally. MDPI 2020-01-07 /pmc/articles/PMC7022521/ /pubmed/31936017 http://dx.doi.org/10.3390/polym12010145 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Hu, Lin Song, Jiaxing Yin, Xinxing Su, Zhen Li, Zaifang Research Progress on Polymer Solar Cells Based on PEDOT:PSS Electrodes |
title | Research Progress on Polymer Solar Cells Based on PEDOT:PSS Electrodes |
title_full | Research Progress on Polymer Solar Cells Based on PEDOT:PSS Electrodes |
title_fullStr | Research Progress on Polymer Solar Cells Based on PEDOT:PSS Electrodes |
title_full_unstemmed | Research Progress on Polymer Solar Cells Based on PEDOT:PSS Electrodes |
title_short | Research Progress on Polymer Solar Cells Based on PEDOT:PSS Electrodes |
title_sort | research progress on polymer solar cells based on pedot:pss electrodes |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7022521/ https://www.ncbi.nlm.nih.gov/pubmed/31936017 http://dx.doi.org/10.3390/polym12010145 |
work_keys_str_mv | AT hulin researchprogressonpolymersolarcellsbasedonpedotpsselectrodes AT songjiaxing researchprogressonpolymersolarcellsbasedonpedotpsselectrodes AT yinxinxing researchprogressonpolymersolarcellsbasedonpedotpsselectrodes AT suzhen researchprogressonpolymersolarcellsbasedonpedotpsselectrodes AT lizaifang researchprogressonpolymersolarcellsbasedonpedotpsselectrodes |